Abstract

Luminescent SiN-based multilayers were prepared in a plasma enhanced chemical vapor deposition system followed by subsequently laser crystallization of ultrathin amorphous Si-rich SiN sublayers. The cross-sectional TEM analysis reveals that grain size of Si nanocrystals embedded in the Si-rich SiN sublayers is independent of the laser fluence, while the grain density can be well controlled by the laser fluence. The devices containing the laser crystallized multilayers show a low turn-on voltage of 5 V and exhibit strong green light emission under both optical and electrical excitations. Moreover, the device after laser-irradiated at 554 mJ/cm2 shows a significantly enhanced EL intensity as well as external quantum efficiency compared with the device without laser irradiation. The EL mechanism is suggested from the bipolar recombination of electron-hole pairs at Si nanocrystals. The improved performance of the devices was discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
    [CrossRef]
  2. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  4. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
    [CrossRef] [PubMed]
  5. M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003).
    [CrossRef]
  6. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
    [CrossRef] [PubMed]
  7. G. R. Lin, C. J. Lin, and C. K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
    [CrossRef] [PubMed]
  8. Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
    [CrossRef]
  9. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
    [CrossRef]
  10. C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
    [CrossRef]
  11. R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
    [CrossRef]
  12. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
    [CrossRef]
  13. Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
    [CrossRef]
  14. F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
    [CrossRef]
  15. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
    [CrossRef]
  16. A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
    [CrossRef]
  17. T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
    [CrossRef]
  18. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
    [CrossRef]
  19. T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
    [CrossRef]
  20. M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
    [CrossRef]
  21. J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
    [CrossRef] [PubMed]
  22. R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).
  23. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
    [CrossRef]
  24. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
    [CrossRef]

2009

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[CrossRef] [PubMed]

2008

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

2007

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

G. R. Lin, C. J. Lin, and C. K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
[CrossRef] [PubMed]

2006

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

2004

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

2003

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003).
[CrossRef]

2001

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

2000

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

1999

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
[CrossRef]

T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
[CrossRef]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

1996

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

1995

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Allan, G.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Anopchenko, A.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

Basu, S. N.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Bellutti, P.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

Brown, S. W.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Büscher, H.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Byeon, C. C.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Cao, L.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

Cao, Z. X.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

Cen, Z. H.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Chang, W. J.

M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
[CrossRef]

Chen, G. R.

Chen, K.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Chen, K. J.

Chen, T. P.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Cho, C.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Cho, K. S.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

Choi, C.-J.

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Dal Negro, L.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Delerue, C.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Deshpande, S. V.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Diener, J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Ding, H.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Ding, L.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Dong, H.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Falter, C.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Fauchet, P. M.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Fung, S.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Galli, G.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Giorgis, F.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Goh, W. P.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Grom, G. F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Gulari, E.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Hamel, S.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Houng, M. P.

M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
[CrossRef]

Huang, R.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Huang, X.

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Huh, C.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

Jorne, J.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Kamei, T.

T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
[CrossRef]

Khomchenko, V.

M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003).
[CrossRef]

Kim, B.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Kim, J. S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Kim, K.-H.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

Kim, T.-Y.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

Kimerling, L. C.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Koch, F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Kovalev, D.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Kwon, M.-K.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Labbe, H. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Lee, J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Li, R.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Li, W.

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[CrossRef] [PubMed]

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Lin, C. J.

Lin, C. K.

Lin, G. R.

Liu, Y.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[CrossRef] [PubMed]

Liu, Z.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Lockwood, D. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Ludwig, W.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Ma, Z.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Ma, Z. Y.

Marconi, A.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

Mastsuda, A.

T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

McCaffrey, J. P.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Mun, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Ok, Y.-W.

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

Park, N.-M.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Park, S.-J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Park, T.-Y.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Pavesi, L.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Pirri, C. F.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Pucker, G.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

Rand, S. C.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Seong, T.-Y.

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Shin, J.-H.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

Song, C.

Sopinskyy, M.

M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003).
[CrossRef]

Stradins, P.

T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
[CrossRef]

Sung, G. Y.

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

Tsybeskov, L.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Vinegoni, C.

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Wan, N.

Wang, D.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Wang, L.

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Wang, M.

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

Wang, T.

Wang, X.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

Wang, Y. G.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

Wang, Y. H.

M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
[CrossRef]

Wang, Y. Q.

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

Warga, J.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

White, B.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Williamson, A.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Wolkin, M. V.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

Wong, J. I.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Xie, X.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Xu, J.

J. Zhou, G. R. Chen, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song, and K. J. Chen, “Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures,” Opt. Express 17(1), 156–162 (2009).
[CrossRef] [PubMed]

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Xu, L.

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

Yang, M.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Yi, J. H.

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

Zhang, K.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Zhang, L.

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Zhou, J.

Zhu, F. R.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Zi, J.

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

Acta Phys. Sin.

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, J. Xu, W. Li, and Z. Ma, “Electroluminescence from Si-rich SiNx/N-rich SiNy multilayer light-emitting devices,” Acta Phys. Sin. 58, 2072–2076 (2009).

Adv. Mater.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons,” Adv. Mater. 20(16), 3100–3104 (2008).
[CrossRef]

Appl. Phys. Lett.

Z. H. Cen, T. P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F. R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94(4), 041102 (2009).
[CrossRef]

Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83(17), 3474–3476 (2003).
[CrossRef]

L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, “Light emission from silicon-rich nitride nanostructures,” Appl. Phys. Lett. 88(18), 183103 (2006).
[CrossRef]

C. Huh, N.-M. Park, J.-H. Shin, K.-H. Kim, T.-Y. Kim, K. S. Cho, and G. Y. Sung, “Effects of Ag/indium tin oxide contact to a SiC doping layer on performance of Si nanocrystal light-emitting diodes,” Appl. Phys. Lett. 88(13), 131913 (2006).
[CrossRef]

R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. Li, J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett. 91(11), 111104 (2007).
[CrossRef]

R. Huang, H. Dong, D. Wang, K. Chen, H. Ding, X. Wang, W. Li, J. Xu, and Z. Ma, “Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices,” Appl. Phys. Lett. 92(18), 181106 (2008).
[CrossRef]

A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94(22), 221110 (2009).
[CrossRef]

T. Kamei, P. Stradins, and A. Mastsuda, “Effects of embedded crystallites in amorphous silicon on light-induced defect creation,” Appl. Phys. Lett. 74(12), 1707–1709 (1999).
[CrossRef]

J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69(2), 200–202 (1996).
[CrossRef]

T.-Y. Kim, N.-M. Park, K.-H. Kim, G. Y. Sung, Y.-W. Ok, T.-Y. Seong, and C.-J. Choi, “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films,” Appl. Phys. Lett. 85(22), 5355–5357 (2004).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(15), 151116 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

L. Zhang, K. Chen, X. Huang, L. Wang, J. Xu, and W. Li, “Control of size and shape of nc-Si in a-SiNx/a-Si:H multilayers by laser induced constrained crystallization,” Appl. Phys., A Mater. Sci. Process. 77(3-4), 485–489 (2003).
[CrossRef]

Curr. Opin. Solid State Mater. Sci.

M. Sopinskyy and V. Khomchenko, “Electroluminescence in SiOx films and SiOx-film-based system,” Curr. Opin. Solid State Mater. Sci. 7(2), 97–109 (2003).
[CrossRef]

J. Appl. Phys.

M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” J. Appl. Phys. 86(3), 1488–1491 (1999).
[CrossRef]

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534–6541 (1995).
[CrossRef]

Nature

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature 407(6802), 358–361 (2000).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

F. Giorgis, C. F. Pirri, C. Vinegoni, and L. Pavesi, “Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers,” Phys. Rev. B 60(16), 11572–11576 (1999).
[CrossRef]

Phys. Rev. Lett.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999).
[CrossRef]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Raman spectra of multilayer samples irradiated at different laser fluences.

Fig. 2
Fig. 2

Cross-section TEM micrograph of a multilayer irradiated at (a) 554 mJ/cm2, HRTEM micrograph of a multilayer irradiated at (b) 475 mJ/cm2 and (c) 554 mJ/cm2.

Fig. 3
Fig. 3

(a) Room temperature EL spectra of the device after irradiated at a laser fluence of 554 mJ/cm2, the circle line represents the PL from the same device excited with the 325 nm line from a He-Cd laser. (b) The characteristics of the current -voltage (I-V) of the devices with and without laser irradiation under the forward bias condition, respectively. Inset shows the trap-assisted tunneling (TAT) plots and the dependence of integrated EL intensity on the injected current through the device laser-irradiated at 554 mJ/cm2.

Fig. 4
Fig. 4

(a) Room temperature EL spectra of the devices after irradiated at different laser fluence. (b) The integrated EL intensity and injected current density from the device vs the laser fluence.

Fig. 5
Fig. 5

(a) Turn-on voltage for EL and (b) EL intensity-to-current of the devices plotted as a function of laser fluence, respectively.

Metrics