Abstract

We use nonlinear optical microscopy combining Second Harmonic Generation (SHG) microscopy and Two-Photon Excited Fluorescence (2PEF) signals to characterize collagen lyotropic liquid crystals. We show that SHG signals provide highly contrasted images of the three-dimensional texture of cholesteric patterns with submicrometer lateral resolution. Moreover, simultaneous recording of the 2PEF signal enables in situ quantitative mapping of the molecular concentration and its correlation with the observed textures. We apply this technique to the characterization of biomimetic textures obtained in concentrated collagen liquid solutions. We successfully image biologically relevant organizations that are similar to the collagen organization found as a stabilized state in compact bones.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [CrossRef]
  2. K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
    [CrossRef]
  3. G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
    [CrossRef]
  4. M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
    [CrossRef]
  5. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [CrossRef]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  7. R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
    [CrossRef] [PubMed]
  8. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
    [CrossRef]
  9. D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
    [CrossRef]
  10. L. Moreaux, O. Sandre, and J. Mertz, “Membrane imaging by second-harmonic generation microscopy,” J. Opt. Soc. Am. B 17(10), 1685–1694 (2000).
    [CrossRef]
  11. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
    [CrossRef] [PubMed]
  12. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
    [CrossRef]
  13. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [CrossRef]
  14. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
    [CrossRef] [PubMed]
  15. O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
    [CrossRef]
  16. H. Kim, T. K. Lim, S. T. Shin, C. K. Lee, F. Araoka, M. Ofuji, Y. Takanishi, and H. Takezoe, “Coexistence of polar and nonpolar domains and their photocontrol in the B-7 phase of a bent-core liquid crystal containing azo dyes,” Phys. Rev. E 69, - (2004).
  17. A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
    [CrossRef] [PubMed]
  18. F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
    [CrossRef] [PubMed]
  19. M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
    [CrossRef]
  20. D. J. S. Hulmes, “Building Collagen Molecules, Fibrils, and Suprafibrillar Structures,” J. Struct. Biol. 137(1-2), 2–10 (2002).
    [CrossRef] [PubMed]
  21. F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
    [CrossRef] [PubMed]
  22. G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
    [CrossRef]
  23. P. De Sa Peixoto, A. Deniset-Besseau, A. Anglo, C. Illoul, M.-C. Schanne-Klein, and G. Mosser, (in preparation).
  24. I. Bergman and R. Loxley, “2 Improved and Simplified Methods for Spectrophotometric Determination of Hydroxyproline,” Anal. Chem. 35, 1961-& (1963).
  25. F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, and S. Asnacios, “Power law rheology and strain-induced yielding in acidic solutions of type I-collagen,” submitted.
  26. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
    [CrossRef]
  27. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
    [CrossRef] [PubMed]
  28. M.-M. Giraud-Guille, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons,” Calcif. Tissue Int. 42(3), 167–180 (1988).
    [CrossRef] [PubMed]

2009 (2)

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

2008 (3)

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
[CrossRef]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express 16(19), 14703–14715 (2008).
[CrossRef] [PubMed]

2007 (2)

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

2006 (3)

R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006).
[CrossRef] [PubMed]

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

2005 (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef]

2004 (1)

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

2002 (3)

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

D. J. S. Hulmes, “Building Collagen Molecules, Fibrils, and Suprafibrillar Structures,” J. Struct. Biol. 137(1-2), 2–10 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

1997 (3)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
[CrossRef]

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1988 (1)

M.-M. Giraud-Guille, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons,” Calcif. Tissue Int. 42(3), 167–180 (1988).
[CrossRef] [PubMed]

1979 (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Akagi, K.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Amundson, K.

K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
[CrossRef]

Anglo, A.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

Barad, Y.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

Beaurepaire, E.

Belamie, E.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
[CrossRef]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

Benichou, E.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

Bouligand, Y.

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

Brakenhoff, G. J.

Brevet, P.-F.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

Bulat, M.

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Davidson, P.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

Deniset-Besseau, A.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dierking, I.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Duboisset, J.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

Freund, I.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Giraud-Guille, M.-M.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
[CrossRef]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

M.-M. Giraud-Guille, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons,” Calcif. Tissue Int. 42(3), 167–180 (1988).
[CrossRef] [PubMed]

Gobeaux, F.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

Goh, M.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Grinstein, G.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Guo, S.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Hache, F.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

Helary, C.

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

Held, G. A.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Heppke, G.

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

Hernest, M.

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Houkawa, Y.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Hulmes, D. J. S.

D. J. S. Hulmes, “Building Collagen Molecules, Fibrils, and Suprafibrillar Structures,” J. Struct. Biol. 137(1-2), 2–10 (2002).
[CrossRef] [PubMed]

Ishikawa, K.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Kosbar, L. L.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Lee, V.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Lowe, A. C.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Martin, J.-L.

Mertz, J.

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Miller, R. D.

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Morales-Saavedra, O. G.

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

Moreaux, L.

Mori, T.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Mosser, G.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
[CrossRef]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

Müller, M.

Ofuji, M.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Oh-E, M.

Olivier, N.

Panine, P.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

Patel, J. S.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

Pena, A.-M.

Pillai, R. S.

Rauch, S.

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Roth, S.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Sandre, O.

Schadt, M.

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

Schanne-Klein, M.-C.

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

Silberberg, Y.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Strupler, M.

Takanishi, Y.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Takano, Y.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Takezoe, H.

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

Tharaux, P.-L.

van Blaaderen, A.

K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
[CrossRef]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef]

Wiltzius, P.

K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
[CrossRef]

Yelin, D.

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

Yokoyama, H.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Depth-resolved imaging of nematic liquid crystals by third-harmonic microscopy,” Appl. Phys. Lett. 74(21), 3107–3109 (1999).
[CrossRef]

Biophys. J. (3)

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys. J. 82(1 Pt 1), 493–508 (2002).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef]

Calcif. Tissue Int. (1)

M.-M. Giraud-Guille, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact-Bone Osteons,” Calcif. Tissue Int. 42(3), 167–180 (1988).
[CrossRef] [PubMed]

Curr. Opin. Colloid In. (1)

M.-M. Giraud-Guille, G. Mosser, and E. Belamie, “Liquid crystallinity in collagen systems in vitro and in vivo,” Curr. Opin. Colloid In. 13(4), 303–313 (2008).
[CrossRef]

J. Chem. Phys. (1)

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

J. Mol. Biol. (1)

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol. 376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. Deniset-Besseau, J. Duboisset, E. Benichou, F. Hache, P.-F. Brevet, and M.-C. Schanne-Klein, “Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin,” J. Phys. Chem. B 113(40), 13437–13445 (2009).
[CrossRef] [PubMed]

J. Struct. Biol. (1)

D. J. S. Hulmes, “Building Collagen Molecules, Fibrils, and Suprafibrillar Structures,” J. Struct. Biol. 137(1-2), 2–10 (2002).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

M. Ofuji, Y. Takano, Y. Houkawa, Y. Takanishi, K. Ishikawa, H. Takezoe, T. Mori, M. Goh, S. Guo, and K. Akagi, “Microscopic orientational order of polymer chains in helical polyacetylene thin films studied by confocal laser raman microscopy,” Jpn. J. Appl. Phys. 45(No. 3A), 1710–1713 (2006).
[CrossRef]

Langmuir (1)

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, P. Panine, and M.-M. Giraud-Guille, “Cooperative ordering of collagen triple helices in the dense state,” Langmuir 23(11), 6411–6417 (2007).
[CrossRef] [PubMed]

Matrix Biol. (1)

G. Mosser, A. Anglo, C. Helary, Y. Bouligand, and M.-M. Giraud-Guille, “Dense tissue-like collagen matrices formed in cell-free conditions,” Matrix Biol. 25(1), 3–13 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

O. G. Morales-Saavedra, M. Bulat, S. Rauch, and G. Heppke, “Domain structure studies in phases of bent-shaped molecules by spatially resolved second harmonic microscopy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 413, 2743–2752 (2004).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Amundson, A. van Blaaderen, and P. Wiltzius, “Morphology and electro-optic properties of polymer-dispersed liquid-crystal films,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(2), 1646–1654 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

G. A. Held, L. L. Kosbar, I. Dierking, A. C. Lowe, G. Grinstein, V. Lee, and R. D. Miller, “Confocal Microscopy Study of Texture Transitions in a Polymer Stabilized Cholesteric Liquid Crystal,” Phys. Rev. Lett. 79(18), 3443–3446 (1997).
[CrossRef]

D. Yelin, Y. Silberberg, Y. Barad, and J. S. Patel, “Phase-matched third-harmonic generation in a nematic liquid crystal cell,” Phys. Rev. Lett. 82(15), 3046–3049 (1999).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (4)

H. Kim, T. K. Lim, S. T. Shin, C. K. Lee, F. Araoka, M. Ofuji, Y. Takanishi, and H. Takezoe, “Coexistence of polar and nonpolar domains and their photocontrol in the B-7 phase of a bent-core liquid crystal containing azo dyes,” Phys. Rev. E 69, - (2004).

P. De Sa Peixoto, A. Deniset-Besseau, A. Anglo, C. Illoul, M.-C. Schanne-Klein, and G. Mosser, (in preparation).

I. Bergman and R. Loxley, “2 Improved and Simplified Methods for Spectrophotometric Determination of Hydroxyproline,” Anal. Chem. 35, 1961-& (1963).

F. Gobeaux, E. Belamie, G. Mosser, P. Davidson, and S. Asnacios, “Power law rheology and strain-induced yielding in acidic solutions of type I-collagen,” submitted.

Supplementary Material (1)

» Media 1: AVI (6012 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup and collagen microchamber. (X, Y, Z) is the laboratory frame, with (X, Y) the image plane. (x, y, z) is the molecular frame. γ is the angle of the collagen molecules to the focal plane.

Fig. 2
Fig. 2

Multiphoton Imaging of a liquid crystalline collagen solution in acetic acid (500mM, pH=2.5). (a) SHG signal and (b) enhanced 2PEF signal using the displayed Look-Up Table. Scale bar: 10 µm. (c) SHG profile of the region of interest indicated in (a) with a yellow box. The red dotted line corresponds to fitting with a cosines squared (see Fig. 3). Inset: scheme of cholesteric organization along the Y axis depicted in Fig. 1 and Fig. 2(a). The purple arrows indicate the SHG maxima that correspond to collagen molecules aligned within the focal plane.

Fig. 3
Fig. 3

Model calculation of the SHG intensity profile along a cholesteric pattern. (a) SHG intensity as a function of ρ=βzxx/ βzzz and γ, the angle of the collagen molecule to the focal plane. (b-d) SHG intensity profiles for (b) ρ=0, (c) ρ=0.5 and (d) ρ=1 (black lines) compared to a cosines squared profile (red lines) that is used to fit the experimental data (see Fig. 2(c)).

Fig. 4
Fig. 4

Calibration of 2PEF intensity as a function of collagen concentration. Black squares are experimental data, red line is linear fitting.

Fig. 5
Fig. 5

Multiphoton Imaging of a liquid crystalline collagen solution in acetic acid (5mM pH=3.5). (a) SHG signal and (b) enhanced 2PEF signal (same Look-Up Table as in Fig. 2). The white arrow indicates the direction of the collagen concentration gradient. Scale bar: 20 µm. (c) SHG and (d) 2PEF profiles along the concentration gradient in (a) and (b). The concentration scale in (c) is determined using the calibration curve in Fig. 4 and the 2PEF profile in (d). The red triangles in (c) correspond to maxima of the fringes determined by multiple Gaussian fitting. The dotted line in (c) corresponds to fitting with a quadratic dependence. The red line in (d) corresponds to linear fitting.

Fig. 6
Fig. 6

SHG Images of a liquid crystalline collagen solution in chloride acid: (a) pH=3.5, (b) pH=2.5 (Media 1) showing loose cholesteric pattern with few defects (lc), fingerprint texture (ft) and isotropic areas (i). Scale bar: 10 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ¯ ( ω ) = E ω ( X ^ + i Y ^ ) .
E X ( 2 ω ) N [ cos 3 γ β z z z + ( 2 cos γ sin 2 γ cos 3 γ ) β z x x ] E ω 2 ,
E Y ( 2 ω ) N [ 2 i cos γ β z x x ] E ω 2 ,
I ( 2 ω ) N 2 | β z z z | 2 [ 4 ρ 2 cos 2 γ + ( cos γ 3 + ρ cos γ ( 3 sin 2 γ 1 ) ) 2 ] I 2 ( ω ) .

Metrics