Abstract

Bimetallic sliver/gold sensor chips are attractive since they combine the advantages of both silver and gold layers. Optical properties of the bimetallic sensor chips show significant aging effects. Surface plasmon resonance (SPR) curves were produced on an SPR device and the time dependence of aging on SPR curves was studied. The results show that resonance angle and full width at half maximum (FWHM) of response curves increase with the aging time after film deposition. The performance of the sensor chips in terms of intrinsic sensitivity (IS) degrades with aging time. The underlying mechanism of the aging effect is explained as the growth of a silver oxide layer between gold and silver during the aging process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hwang, “Glycobiology: Surface sensing,” Nature 457, 618–618 (2009).
    [Crossref]
  2. Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
    [PubMed]
  3. M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
    [Crossref] [PubMed]
  4. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74, 696–701(2002).
    [Crossref] [PubMed]
  5. F.-C. Chien and S. -J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
    [Crossref] [PubMed]
  6. Y. Sun and Y. Xia, “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes,” Anal. Chem. 74, 5297–5305 (2002).
    [Crossref] [PubMed]
  7. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751(2009).
    [Crossref] [PubMed]
  8. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
    [Crossref]
  9. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
    [Crossref]
  10. S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
    [Crossref]
  11. B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
    [Crossref]
  12. B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
    [Crossref] [PubMed]
  13. Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
    [Crossref]
  14. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
    [Crossref]
  15. A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
    [Crossref]
  16. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
    [Crossref]
  17. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
    [Crossref]
  18. J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Phil. Trans. R. Soc. 203, 385–420 (1904).
    [Crossref]
  19. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
    [Crossref]
  20. L. Genzel and T. P. Martin, “Infrared Absorption in Small Ionic Crystals,” Phys. Stat. Sol. B 51, 91–99 (1972).
    [Crossref]
  21. Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
    [Crossref]

2009 (2)

2007 (2)

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

2006 (2)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

2005 (2)

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
[Crossref]

2004 (2)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

F.-C. Chien and S. -J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[Crossref] [PubMed]

2002 (4)

Y. Sun and Y. Xia, “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes,” Anal. Chem. 74, 5297–5305 (2002).
[Crossref] [PubMed]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74, 696–701(2002).
[Crossref] [PubMed]

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
[Crossref]

2001 (1)

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
[PubMed]

1996 (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

1976 (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

1972 (1)

L. Genzel and T. P. Martin, “Infrared Absorption in Small Ionic Crystals,” Phys. Stat. Sol. B 51, 91–99 (1972).
[Crossref]

1904 (1)

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Phil. Trans. R. Soc. 203, 385–420 (1904).
[Crossref]

Abrantes, M.

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

Arce, A.

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
[Crossref]

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
[Crossref]

Awazu, K.

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Boyd, L. F.

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

Bu, J.

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Chen, S. -J.

F.-C. Chien and S. -J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[Crossref] [PubMed]

Chien, F.-C.

F.-C. Chien and S. -J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Fang, X.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Fujimaki, M.

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Gagnaire, H.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Genzel, L.

L. Genzel and T. P. Martin, “Infrared Absorption in Small Ionic Crystals,” Phys. Stat. Sol. B 51, 91–99 (1972).
[Crossref]

Gupta, B. D.

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Horiuchi, T.

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Hwang, G.

G. Hwang, “Glycobiology: Surface sensing,” Nature 457, 618–618 (2009).
[Crossref]

Irawan, R.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Iwanabe, Y.

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Jha, R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Kurihara, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74, 696–701(2002).
[Crossref] [PubMed]

Lengkeek, H. P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

Lin, Q. Y.

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

Liz-Marzan, L. M.

T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
[Crossref]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
[PubMed]

Magone, M. T.

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

Martin, T. P.

L. Genzel and T. P. Martin, “Infrared Absorption in Small Ionic Crystals,” Phys. Stat. Sol. B 51, 91–99 (1972).
[Crossref]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Phil. Trans. R. Soc. 203, 385–420 (1904).
[Crossref]

Mirsky, V. M.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Mulvaney, P.

T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
[Crossref]

Ng, H. M.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Ong, B. H.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Ronot-Trioli, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
[PubMed]

Samoylov, A. V.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Schuck, P.

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

Sharma, A. K.

R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751(2009).
[Crossref] [PubMed]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

Shirshov, Y. M.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Soto, A.

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes,” Anal. Chem. 74, 5297–5305 (2002).
[Crossref] [PubMed]

Surovtseva, E. R.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Suzuki, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74, 696–701(2002).
[Crossref] [PubMed]

Tan, Y. Y.

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Tjin, S. C.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
[PubMed]

Tominaga, J.

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Trouillet, A.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Ung, T.

T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
[Crossref]

Van Duyne, R. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

van Kampen, F. F.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

van Went, C. G.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

Veillas, C.

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Winsemius, P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

Xia, Y.

Y. Sun and Y. Xia, “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes,” Anal. Chem. 74, 5297–5305 (2002).
[Crossref] [PubMed]

Yuan, X.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Yuan, X.-C.

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

Zhang, J.

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

Zhang, L.

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Zynio, S. A.

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Anal. Chem. (3)

M. Abrantes, M. T. Magone, L. F. Boyd, and P. Schuck, “Adaptation of a surface plasmon resonance biosensor with microfluidics for use with small sample volumes and long contact times,” Anal. Chem. 73, 2828–2835 (2001).
[Crossref] [PubMed]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74, 696–701(2002).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes,” Anal. Chem. 74, 5297–5305 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Y. Tan, X.-C. Yuan, B. H. Ong, J. Bu, and Q. Y. Lin, “Two-layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles,” Appl. Phys. Lett. 91, 141108 (2007).
[Crossref]

Biochim Biophys Acta. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems,” Biochim Biophys Acta. 1331, 131–152 (1997).
[PubMed]

Biosens. Bioelectron. (1)

F.-C. Chien and S. -J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20, 633–642 (2004).
[Crossref] [PubMed]

Colloids and Surfaces A: Physicochemical and Engineering Aspects (1)

T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanoparticle thin films,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 202, 119–126 (2002).
[Crossref]

J. Phys. F (1)

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F 6, 1583–606 (1976).
[Crossref]

Lab Chip (1)

B. H. Ong, X. Yuan, Y. Y. Tan, R. Irawan, X. Fang, L. Zhang, and S. C. Tjin, “Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide,” Lab Chip 7, 506–512 (2007).
[Crossref] [PubMed]

Nano Lett. (1)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, “A Localized Surface Plasmon Resonance Biosensor: First Steps toward an Alzheimer’s Disease Assay,” Nano Lett. 4, 1029–1034 (2004).
[Crossref]

Nanotechnology (1)

Y. Iwanabe, M. Fujimaki, K. Awazu, T. Horiuchi, and J. Tominaga, “Substrate and laser power dependence of surface-enhanced Raman scattering from a silver oxide film,” Nanotechnology 17, 1717–1721 (2006).
[Crossref]

Nature (1)

G. Hwang, “Glycobiology: Surface sensing,” Nature 457, 618–618 (2009).
[Crossref]

Opt. Lett. (1)

Phil. Trans. R. Soc. (1)

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Phil. Trans. R. Soc. 203, 385–420 (1904).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974).
[Crossref]

Phys. Stat. Sol. B (1)

L. Genzel and T. P. Martin, “Infrared Absorption in Small Ionic Crystals,” Phys. Stat. Sol. B 51, 91–99 (1972).
[Crossref]

Pure Appl. Opt. (1)

A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure Appl. Opt. 5, 227–237 (1996).
[Crossref]

Sens. Actuators B (2)

B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng, “Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034 (2006).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

Sensors (1)

S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic films Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors 2, 62–70 (2002).
[Crossref]

Thermochimica Acta (1)

A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochimica Acta 435, 197–201(2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SPR curves of a gold film and a bimetallic film in water and ethanol.

Fig. 2.
Fig. 2.

Aging effect on response curves of the bimetallic sensor chips.

Fig. 3.
Fig. 3.

Dependence of resonance angle of SPR curves on aging time.

Fig. 4.
Fig. 4.

Aging effect on FWHM of the SPR curves.

Fig. 5.
Fig. 5.

Effect of aging time on IS.

Fig. 6.
Fig. 6.

Effect of washing process on SPR curves on the same day.

Fig. 7.
Fig. 7.

Effect of interpenetrating depth on resonance angle and FWHM.

Fig. 8.
Fig. 8.

Effect of silver oxide thickness on resonance angle and FWHM.

Fig. 9.
Fig. 9.

Effect of silver oxide thickness on IS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I S = δ θ SPR δ n s · FWHM
The average electric field is E a v = ( E Au + E Ag ) / 2
P a v = [ ( ε A u 1 ) ε 0 E A u + ( ε A g 1 ) ε 0 E A g ] / 2 = ( ε a v 1 ) ε 0 E A v
ε A u E A u = ε A g E A g
Thus , E a v = ( ε A g E A g / ε A u + E A g ) / 2
ε a v = 2 ε A u ε A g / ( ε A u + ε A g )

Metrics