Abstract

Infrared metamaterials fabricated on semiconductor substrates exhibit a high degree of sensitivity to very thin (as small as 2 nm) layers of low permittivity materials between the metallic elements and the underlying substrate. We have measured the resonant frequencies of split ring resonators and square loops fabricated on Si wafers with silicon dioxide thicknesses ranging from 0 to 10 nm. Resonance features blue shift with increasing silicon dioxide thickness. These effects are explained by the silicon dioxide layer forming a series capacitance to the fringing field across the elements. Resonance coupling to the Si-O vibrational absorption has been observed. Native oxide layers which are normally ignored in numerical simulations of metamaterials must be accounted for to produce accurate predictions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Shelton, J. Ginn, and G. Boreman, “Bandwidth variations in conformal infrared frequency selective surfaces,” IEEE Antennas Propag. International Symposium, 3976 (2007)
  2. D. H. Kwon, X. Wang, Z. Bayraktar, B. Weiner, and D. H. Werner, “Near-infrared metamaterial films with reconfigurable transmissive/reflective properties,” Opt. Lett. 33(6), 545–547 (2008).
    [CrossRef] [PubMed]
  3. B. Kanté, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
    [CrossRef]
  4. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
    [CrossRef]
  5. B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
    [CrossRef]
  6. J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
    [CrossRef]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [CrossRef] [PubMed]
  8. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
    [CrossRef] [PubMed]
  9. J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
    [CrossRef]
  10. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [CrossRef]
  11. B. Kanté, A. de Lustrac, J. M. Lourtioz, and F. Gadot, “Engineering resonances in infrared metamaterials,” Opt. Express 16(10), 6774–6784 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-6774 .
    [CrossRef] [PubMed]
  12. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [CrossRef] [PubMed]
  13. D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
    [CrossRef]
  14. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
    [CrossRef]
  15. N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000).
    [CrossRef]
  16. D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811 (1981).
    [CrossRef]
  18. Ansoft HFSS software, http://www.ansoft.com/products/hf/hfss/

2009 (3)

B. Kanté, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

2008 (5)

2007 (3)

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

2000 (1)

N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000).
[CrossRef]

1995 (1)

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

1981 (1)

Akimov, A. G.

N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000).
[CrossRef]

Alda, J.

Averitt, R. D.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Bartal, G.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Bayraktar, Z.

Boreman, G.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Boreman, G. D.

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

Chen, H. T.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

Coffey, K. R.

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

de Lustrac, A.

Gadot, F.

Gaylord, T. K.

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

Ginn, J.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

Ginn, J. C.

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

Highstrete, C.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Kanté, B.

Kotter, D.

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Krenz, P.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

Kwon, D. H.

Lail, B.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, M.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

Li, D.

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

Lourtioz, J. M.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Moharam, M. G.

Monacelli, B.

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Munk, B.

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Munk, B. A.

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

O’Hara, J. F.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Park, Y. S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

Pryor, J.

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Shelton, D.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

Shelton, D. J.

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

Smirnova, E.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Sun, T.

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

Sushkova, N. M.

N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000).
[CrossRef]

Taylor, A. J.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

Tharp, J.

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

Wang, P.

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

Wang, X.

Weiner, B.

Werner, D. H.

Xie, Y. J.

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

Yang, R.

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

Zhang, S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Zhang, X.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

B. Monacelli, J. Pryor, B. A. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

J. Tharp, B. Lail, B. Munk, and G. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. Appl. Phys. (3)

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Redidual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78(2), 962 (1995).
[CrossRef]

D. J. Shelton, T. Sun, J. C. Ginn, K. R. Coffey, and G. D. Boreman, “Relaxation time effects on dynamic conductivity of alloyed metallic thin films in the infrared band,” J. Appl. Phys. 104(10), 103514 (2008).
[CrossRef]

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Electromagn. Waves Appl. (1)

D. Li, Y. J. Xie, P. Wang, and R. Yang, “Applications of Split-ring resonances on multi-band frequency selective surfaces,” J. Electromagn. Waves Appl. 21(11), 1551–1563 (2007).
[CrossRef]

J. Nanoelectron. Optoelectron. (1)

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2(1), 90–95 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

B. Kanté, A. de Lustrac, and J. M. Lourtioz, “In-plane coupling and field enhancement in infrared metamaterial surfaces,” Phys. Rev. B 80(3), 035108 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[CrossRef] [PubMed]

Vacuum (1)

N. M. Sushkova and A. G. Akimov, “Formation of 3D islands of metal oxides on silicon covered by native oxide film by multi-step ion sputtering of Ti, Nb and V,” Vacuum 56(4), 287–291 (2000).
[CrossRef]

Other (2)

Ansoft HFSS software, http://www.ansoft.com/products/hf/hfss/

D. Shelton, J. Ginn, and G. Boreman, “Bandwidth variations in conformal infrared frequency selective surfaces,” IEEE Antennas Propag. International Symposium, 3976 (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Schematic of SRR element.

Fig. 2
Fig. 2

(Color online) Schematic of fringing-field capacitance where electric field lines are shown across the diameter of the SRR penetrating the oxide layers beneath the elements.

Fig. 4
Fig. 4

(color online) FTIR measurements of SRR metamaterials with SiO2 layer thickness indicated and SEM insert of fabricated elements in (a), RCWA simulations of same structures shown in (b).

Fig. 5
Fig. 5

(color online) FTIR measurements of square-loop metamaterials with SiO2 layer thickness indicated and SEM insert of fabricated elements in (a), RCWA simulations of same structures shown in (b).

Fig. 3
Fig. 3

(Color online) IR optical constants for evaporated SiO2, TiO2, and Ti measured using IR VASE system.

Fig. 6
Fig. 6

(color online) Electric field intensity calculated by finite-element method HFSS simulation at element to substrate interface for square ring compared to SRR element from Ref. 5.

Tables (1)

Tables Icon

Table 1 Comparison of fundamental resonant frequency measured by FTIR to simulation and analytical calculations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = 1 ( L C ) 1 2 = 1 [ L ( C g + C f ) ] 1 2
C g = ε 0 ( w t g )
C f = [ ε 0 + ε S i O 2 ( 1 t S i O 2 t n ) + ε T i O 2 ( 1 t T i O 2 t n ) ] × η
η = π 3 ln ( / a ) + ( 2 w + 2 t ) 2 π [ ln ( 4 a g ) γ 2 15 ]
L = μ 0 π ( 2 ) [ ln ( a ) γ + a ]

Metrics