Abstract

We demonstrate a hybrid silicon modulator and switch operating up to 25 Gb/s with over 10 dB extinction ratio. The modulator has voltage-length product of 2.4 V-mm while the switch has switch time less than 35 ps and crosstalk smaller than −12 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  2. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  3. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
    [CrossRef]
  4. Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 20571–20576 (2008).
    [CrossRef] [PubMed]
  5. H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 1920–1922 (2008).
    [CrossRef]
  6. H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
    [CrossRef]
  7. H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
    [CrossRef] [PubMed]
  8. J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
    [CrossRef]
  9. S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
    [CrossRef]
  10. S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
    [CrossRef]

2008 (5)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 1920–1922 (2008).
[CrossRef]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
[CrossRef]

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 20571–20576 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (1)

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

1995 (1)

S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
[CrossRef]

Akiyama, S.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Bowers, J. E.

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
[CrossRef]

Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 20571–20576 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 1920–1922 (2008).
[CrossRef]

H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
[CrossRef] [PubMed]

Chen, H.-W.

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 1920–1922 (2008).
[CrossRef]

Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 20571–20576 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
[CrossRef]

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Chetrit, Y.

Chiu, Y. J.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

Dagli, N.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
[CrossRef]

Fang, A. W.

Hirose, S.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Itoh, H.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Izhaky, N.

Jones, R.

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, “High speed hybrid silicon evanescent electroabsorption modulator,” Opt. Express 16(13), 20571–20576 (2008).
[CrossRef] [PubMed]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “High speed hybrid silicon evanescent Mach-Zehnder modulator and switch,” Opt. Express 16, 1920–1922 (2008).
[CrossRef]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
[CrossRef]

Kuramata, A.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Liao, L.

Lipson, M.

Liu, A. S.

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Manipatruni, S.

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Nguyen, H.

Ozturk, C.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

Paniccia, M.

Paniccia, M. J.

Park, H.

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Rubin, D.

Sakamoto, S. R.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
[CrossRef]

Schmidt, B.

Sekiguchi, S.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Shakya, J.

Shin, J.

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

Spickermann, R.

S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
[CrossRef]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Takeuchi, T.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

Xu, Q.

Yamamoto, T.

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

IEEE Electron. Lett. (1)

S. R. Sakamoto, R. Spickermann, and N. Dagli, “Narrow gap coplanar slow wave electrode for traveling wave electro-optic modulators,” IEEE Electron. Lett. 31(14), 1183–1185 (1995).
[CrossRef]

IEEE Lightwave Technol. (1)

S. Akiyama, H. Itoh, S. Sekiguchi, S. Hirose, T. Takeuchi, A. Kuramata, and T. Yamamoto, “InP-Based Mach-Zehnder Modulator With Capacitively Loaded Traveling-Wave Electrodes,” IEEE Lightwave Technol. 26(5), 608–615 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A Hybrid Silicon-AlGaInAs Phase Modulator,” IEEE Photon. Technol. Lett. 20(23), 1920–1922 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. Shin, C. Ozturk, S. R. Sakamoto, Y. J. Chiu, and N. Dagli, “Novel T-Rail Electrodes for Substrate Removed Low-Voltage High-Speed GaAs/AlGaAs Electrooptic Modulators,” IEEE Trans. Microw. Theory Tech. 53(2), 636–643 (2005).
[CrossRef]

Nat. Photonics (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Opt. Express (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Top view of a device with a CL slotline electrode (b) Cross section of loaded (along A-A’) and unloaded sections (along B-B’) of the hybrid waveguide.

Fig. 2
Fig. 2

The equivalent circuit model of the CL slotline design.

Fig. 3
Fig. 3

The product of velocity mismatch and total length of the electrode as a function of fill factor for a MZM with La = 500 μm. The red dot shows the device design implemented here.

Fig. 4
Fig. 4

(a) Impedance of CL slotline and CPW design for a MZM with La = 500 μm. (b) Propagation loss of CL slotline and CPW design for a MZM with La = 500 μm.

Fig. 5
Fig. 5

(a) Experimental frequnecy responses for the MZMs. (b) The driven electrical signal out from the BERT at 25 Gb/s. (c) The modulated signal after the modulator for a 500 μm MZM.

Fig. 6
Fig. 6

(a) BER versus optical received power for all ports configurations at 40 Gb/s with 231-1 NRZ PRBS. (b)The measured rise time from 10% to 90% for individual port.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ C = ε Q W w d F
Z 0 = L u C u + Δ C / 2        v p h = 1 L u ( C u + Δ C / 2 )
H ( f ) = e α L t 2 [ sin h 2 ( α L t 2 ) + sin 2 ( ω Δ v L t 2 ) ( α L t 2 ) 2 + ( ω Δ v L t 2 ) 2 ] 1 2

Metrics