Abstract

Digital image correlation (DIC) is an easy-to-implement yet powerful optical metrology for deformation measurement. The technique measures the displacement of a point of interest by matching the subsets surrounding the same point located in the reference image and the deformed image. Although the technique is simple in principle, the existing DIC technique has several deficiencies. For example, for the points located near or at the boundaries of a specified region of interest (ROI), the selected square subsets surrounding these points may contain unwanted or foreign pixels from background image or other regions. In the existing DIC method, these points are either intentionally excluded from calculation or automatically removed after calculation, and leads to the absence of deformation information for the boundary points. Besides, existing DIC technique is prone to yield erroneous measurement for specimen with geometric discontinuities. In this paper, two approaches are developed to overcome the deficiencies of existing DIC technique. First, a modified Zero-mean Normalized Sum of Squared Differences (ZNSSD) criterion is defined for the correlation analysis of subsets surrounding the boundary points. Second, considering the possible complex shape of the ROI, a scanning strategy guided by the correlation coefficients of computed points is proposed to ensure reliable computation between consecutive points. With these two measures, the deformation of all the points including those located near or at the ROI boundaries can be automatically, reliably, and accurately determined. The improved DIC technique is universally applicable to the genuine full-field deformation measurement of objects with complex or arbitrary shapes. Two typical experimental image pairs are processed to evaluate the performance of the proposed method, and the results successfully demonstrate its effectiveness and practicality.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1981).
  2. T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
    [CrossRef]
  3. B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
    [CrossRef]
  4. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).
  5. B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
    [CrossRef]
  6. B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
    [CrossRef]
  7. B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, "Improved speckle projection profilometry for out-of-plane shape measurement," Appl. Opt. 47, 5527-5533 (2008).
    [CrossRef] [PubMed]
  8. H. Q. Jin, and H. A. Bruck, "Theoretical development for pointwise digital image correlation," Opt. Eng. 44, 1-14 (2005).
    [CrossRef]
  9. P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
    [CrossRef]
  10. Y. Sun, J. H. L. Pang, C. K. Wong, and F. Su, "Finite element formulation for a digital image correlation method," Appl. Opt. 44, 7357-7363 (2005).
    [CrossRef] [PubMed]
  11. G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
    [CrossRef]
  12. J. Rethore, F. Hild, and S. Roux, "Extended digital image correlation with crack shape optimization," Int. J. Numerical Methods Eng. 732, 248-272 (2008).
    [CrossRef]
  13. J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
    [CrossRef]
  14. H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
    [CrossRef]
  15. G. Vendroux and W. G. Knauss, "Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation," Exp. Mech. 38, 86-92 (1998).
    [CrossRef]
  16. B. Pan, "Reliability-guided digital image correlation for image deformation measurement," Appl. Opt. 48, 1535-1542 (2009).
    [CrossRef] [PubMed]
  17. B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
    [CrossRef]
  18. H. Lu and P. D. Cary, "Deformation measurement by digital image correlation: implementation of a second-order displacement gradient," Exp. Mech. 40, 393-400 (2000).
    [CrossRef]
  19. B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, "Study of Subset Size Selection in Digital Image Correlation for Speckle Patterns," Opt. Express 16, 7037-7048 (2008).
    [CrossRef] [PubMed]
  20. B. Pan, Z. X. Lu, and H. M. Xie, "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation," Opt. Lasers Eng. (In press).
  21. S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
    [CrossRef]
  22. J. Poissant and F. Barthelat, "A novel "subset splitting: procedure for digital image correlation on discontinuous displacement fields,"Exp. Mech. (In press).

2009

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
[CrossRef]

B. Pan, "Reliability-guided digital image correlation for image deformation measurement," Appl. Opt. 48, 1535-1542 (2009).
[CrossRef] [PubMed]

2008

2007

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
[CrossRef]

2006

G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
[CrossRef]

2005

Y. Sun, J. H. L. Pang, C. K. Wong, and F. Su, "Finite element formulation for a digital image correlation method," Appl. Opt. 44, 7357-7363 (2005).
[CrossRef] [PubMed]

H. Q. Jin, and H. A. Bruck, "Theoretical development for pointwise digital image correlation," Opt. Eng. 44, 1-14 (2005).
[CrossRef]

2002

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

2000

H. Lu and P. D. Cary, "Deformation measurement by digital image correlation: implementation of a second-order displacement gradient," Exp. Mech. 40, 393-400 (2000).
[CrossRef]

1998

G. Vendroux and W. G. Knauss, "Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation," Exp. Mech. 38, 86-92 (1998).
[CrossRef]

1989

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

1985

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

1981

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1981).

Asundi, A

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

Asundi, A.

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, "Improved speckle projection profilometry for out-of-plane shape measurement," Appl. Opt. 47, 5527-5533 (2008).
[CrossRef] [PubMed]

Barthelat, F.

J. Poissant and F. Barthelat, "A novel "subset splitting: procedure for digital image correlation on discontinuous displacement fields,"Exp. Mech. (In press).

Besnard, G.

G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
[CrossRef]

Bruck, H. A.

H. Q. Jin, and H. A. Bruck, "Theoretical development for pointwise digital image correlation," Opt. Eng. 44, 1-14 (2005).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Cary, P. D.

H. Lu and P. D. Cary, "Deformation measurement by digital image correlation: implementation of a second-order displacement gradient," Exp. Mech. 40, 393-400 (2000).
[CrossRef]

Cheng, P.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

Chu, T. C.

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

Dai, F. L.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

Gao, J. X.

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, "Improved speckle projection profilometry for out-of-plane shape measurement," Appl. Opt. 47, 5527-5533 (2008).
[CrossRef] [PubMed]

Guo, Z. Q.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

Hild, F.

J. Rethore, F. Hild, and S. Roux, "Extended digital image correlation with crack shape optimization," Int. J. Numerical Methods Eng. 732, 248-272 (2008).
[CrossRef]

J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
[CrossRef]

G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
[CrossRef]

Hua, T.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

Jin, H. Q.

H. Q. Jin, and H. A. Bruck, "Theoretical development for pointwise digital image correlation," Opt. Eng. 44, 1-14 (2005).
[CrossRef]

Knauss, W. G.

G. Vendroux and W. G. Knauss, "Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation," Exp. Mech. 38, 86-92 (1998).
[CrossRef]

Lu, H.

H. Lu and P. D. Cary, "Deformation measurement by digital image correlation: implementation of a second-order displacement gradient," Exp. Mech. 40, 393-400 (2000).
[CrossRef]

Lu, Z. X.

B. Pan, Z. X. Lu, and H. M. Xie, "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation," Opt. Lasers Eng. (In press).

McNeil, S. R.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

McNeill, S. R.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

Morimoto, Y.

S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
[CrossRef]

Pan, B.

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

B. Pan, "Reliability-guided digital image correlation for image deformation measurement," Appl. Opt. 48, 1535-1542 (2009).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, "Study of Subset Size Selection in Digital Image Correlation for Speckle Patterns," Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, "Improved speckle projection profilometry for out-of-plane shape measurement," Appl. Opt. 47, 5527-5533 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

B. Pan, Z. X. Lu, and H. M. Xie, "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation," Opt. Lasers Eng. (In press).

Pang, J. H. L.

Peters, W. H.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1981).

Poissant, J.

J. Poissant and F. Barthelat, "A novel "subset splitting: procedure for digital image correlation on discontinuous displacement fields,"Exp. Mech. (In press).

Qian, K. M.

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, "Study of Subset Size Selection in Digital Image Correlation for Speckle Patterns," Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

Ranson, W. F.

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1981).

Rethore, J.

J. Rethore, F. Hild, and S. Roux, "Extended digital image correlation with crack shape optimization," Int. J. Numerical Methods Eng. 732, 248-272 (2008).
[CrossRef]

J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
[CrossRef]

Roux, S.

J. Rethore, F. Hild, and S. Roux, "Extended digital image correlation with crack shape optimization," Int. J. Numerical Methods Eng. 732, 248-272 (2008).
[CrossRef]

J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
[CrossRef]

G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
[CrossRef]

Schreier, H. W.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

Su, F.

Sun, Y.

Sutton, M. A.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

Takashi, M.

S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
[CrossRef]

Vendroux, G.

G. Vendroux and W. G. Knauss, "Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation," Exp. Mech. 38, 86-92 (1998).
[CrossRef]

Wang, Z. Y.

Wong, C. K.

Xie, H. M.

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, K. M. Qian, and Z. Y. Wang, "Study of Subset Size Selection in Digital Image Correlation for Speckle Patterns," Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, J. X. Gao, and A. Asundi, "Improved speckle projection profilometry for out-of-plane shape measurement," Appl. Opt. 47, 5527-5533 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

B. Pan, Z. X. Lu, and H. M. Xie, "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation," Opt. Lasers Eng. (In press).

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

Yang, L. H.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
[CrossRef]

Yoneyama, S.

S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
[CrossRef]

Appl. Opt.

Comput. Methods Appl. Mech. Eng.

J. Rethore, F. Hild, and S. Roux, "Shear-band capturing using a multiscale extended digital image correlation technique," Comput. Methods Appl. Mech. Eng. 196, 5016-5030 (2007).
[CrossRef]

Exp. Mech.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

G. Vendroux and W. G. Knauss, "Submicron Deformation Field Measurements: Part 2 improved Digital Image Correlation," Exp. Mech. 38, 86-92 (1998).
[CrossRef]

T. C. Chu, W. F. Ranson, and M. A. Sutton, and W. H. Peters, "Applications of digital-image-correlation techniques to experimental mechanics," Exp. Mech. 25, 232-244 (1985).
[CrossRef]

G. Besnard, F. Hild, and S. Roux, "Finite-element’ displacement fields analysis from digital images: application to Portevin-le chaterlier bands," Exp. Mech. 46, 789-803 (2006).
[CrossRef]

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, "Full-field speckle pattern image correlation with B-spline deformation function," Exp. Mech. 42, 344-352 (2002).
[CrossRef]

H. Lu and P. D. Cary, "Deformation measurement by digital image correlation: implementation of a second-order displacement gradient," Exp. Mech. 40, 393-400 (2000).
[CrossRef]

J. Poissant and F. Barthelat, "A novel "subset splitting: procedure for digital image correlation on discontinuous displacement fields,"Exp. Mech. (In press).

Int. J. Numerical Methods Eng.

J. Rethore, F. Hild, and S. Roux, "Extended digital image correlation with crack shape optimization," Int. J. Numerical Methods Eng. 732, 248-272 (2008).
[CrossRef]

Meas. Sci. Technol.

B. Pan, K. M. Qian, H. M. Xie, and A Asundi, "Two-dimensional Digital Image Correlation for In-plane Displacement and Strain Measurement: A Review," Meas. Sci. Technol. 20, 062001(2009).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, "Performance of sub-pixel registration algorithms in digital image correlation," Meas. Sci. Technol. 17, 1615-1621 (2006).

Opt. Eng.

H. Q. Jin, and H. A. Bruck, "Theoretical development for pointwise digital image correlation," Opt. Eng. 44, 1-14 (2005).
[CrossRef]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, "Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation," Opt. Eng. 46, 033601 (2007).
[CrossRef]

W. H. Peters and W. F. Ranson, "Digital imaging techniques in experimental stress analysis," Opt. Eng. 21, 427-431 (1981).

Opt. Express

Opt. Lasers Eng.

B. Pan, Z. X. Lu, and H. M. Xie, "Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation," Opt. Lasers Eng. (In press).

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, "Digital Image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Opt. Lasers Eng. 47, 865-874 (2009).
[CrossRef]

Strain.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, "Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique," Strain. 45, 194-200 (2009).
[CrossRef]

S. Yoneyama, Y. Morimoto, and M. Takashi, "Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation," Strain. 42, 21-29 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

An example of correlation calculation using conventional subset-based DIC algorithm: the two representative subsets surrounding the boundary points of the specified ROI contain unwanted points of background intensity.

Fig. 2.
Fig. 2.

Basic principle of subset-based DIC method: tracking the same pixel point in the reference and deformed image yields its displacement vector

Fig. 3.
Fig. 3.

Example of tracking a subset centered at a boundary point

Fig. 4.
Fig. 4.

Schematic of the calculation procedure with existing standard subset-based DIC: (a) row by row, (b) column by column.

Fig. 5.
Fig. 5.

Flowchart of the scanning strategy used in RG-DIC method

Fig. 6.
Fig. 6.

Experimental images of a dog-bone specimen subjected to uniaxial tensile loading: (a) reference image, (b) deformed image, (c) a binary image shows all the valid points within the specified ROI.

Fig. 7.
Fig. 7.

Two intermediate results and the finial results of the computed u-displacement (top), v-displacement (bottom) using the proposed method. The void areas within the contour plots denote the points with relatively lower ZNCC coefficients and will be processed later.

Fig. 8.
Fig. 8.

Comparison of the results obtained with the proposed technique and existing technique: (a)(b) u-displacement field, (c)(d) v-displacement field, and (e)(f) ZNCC coefficient distributions

Fig. 9.
Fig. 9.

Experimental images of a specimen with a crack subjected to uniaxial tensile loading: (a) reference image (the specified ROI is highlighted with yellow color), (b) deformed image.

Fig. 10.
Fig. 10.

From left to right: computed u-displacement field, v-displacement field and ZNCC coefficient distributions

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ZNSSD ( p ) = x = M M y = M M [ f x y f m x = M M y = M M [ f x y f m ] 2 g ( x , y ) g m x = M M y = M M [ g ( x , y ) g m ] 2 ] 2
C ZNCC ( p ) = x = M M y = M M [ f ( x , y ) f m ] × [ g ( x , y ) g m ] x = M M y = M M [ f ( x , y ) f m ] 2 x = M M y = M M [ g ( x , y ) g m ] 2 = 1 0.5 × C ZNSSD ( p )
x = x 0 + Δ x + u + u x Δ x + u y Δ y y = y 0 + Δ y + v + v x Δ x + v y Δ y
p = p 0 C ( p 0 ) C ( p 0 )
C ZNSSD ( p ) = x , y S [ f ( x , y ) f m x , y S [ f x y f m ] 2 g ( x , y ) g m x , y S [ g x y g m ] 2 ] 2

Metrics