Abstract

We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10−8.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, and T. Schmidt, “40G and 100G modules enable next generation networks,” Communications and Photonics conference and Exhibition, 2009 ACP 2009, 1–2 (2009).
  2. H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
    [CrossRef]
  3. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  4. H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” Opt. Fiber Commun. OWG2 (2009).
  5. I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
    [CrossRef]
  6. S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
    [CrossRef]
  7. L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
    [CrossRef]

2009 (4)

H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” Opt. Fiber Commun. OWG2 (2009).

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
[CrossRef] [PubMed]

2007 (1)

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

1998 (1)

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
[CrossRef]

Agrell, E.

Batshon, H. G.

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

Bülow, H.

H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” Opt. Fiber Commun. OWG2 (2009).

Cvijetic, M.

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Djordjevic, I. B.

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Karlsson, M.

Minkov, L. L.

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

Speidel, J.

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
[CrossRef]

ten Brink, S.

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
[CrossRef]

Wang, T.

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Xu, L.

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Yan, R. H.

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
[CrossRef]

Electron. Lett. (1)

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modulation,” Electron. Lett. 34(15), 1459–1460 (1998).
[CrossRef]

IEEE Photon. Technol. (1)

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission,” IEEE Photon. Technol. 21(16), 1139–1141 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. L. Minkov, I. B. Djordjevic, L. Xu, and T. Wang, “PMD compensation in polarization multiplexed multilevel modulations by turbo equalization,” IEEE Photon. Technol. Lett. 21(23), 1773–1775 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100 Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Opt. Express (1)

Opt. Fiber Commun. (1)

H. Bülow, “Polarization QAM Modulation (POL-QAM) for Coherent Detection Schemes,” Opt. Fiber Commun. OWG2 (2009).

Other (1)

J. Hong, and T. Schmidt, “40G and 100G modules enable next generation networks,” Communications and Photonics conference and Exhibition, 2009 ACP 2009, 1–2 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Subcarrier-multiplexed four-dimensional LDPC-coded modulation: System block diagram.

Fig. 2
Fig. 2

Block diagram of the four-dimensional: (a) transmitter, (b) I/Q modulator and (c) receiver.

Fig. 3
Fig. 3

BER performance of the proposed scheme in comparison with PolMux QAM LDPC-coded modulation.

Tables (2)

Tables Icon

Table 1 Mapping rule look-up table for 16-4D.

Tables Icon

Table 2 Mapping rule look-up table for 32-4D.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s i = ( ( E x , i ) ( E x , i ) ( E y , i ) ( E y , i ) ) = ( I x , i Q x , i I y , i Q y , i ) = ( | s x , i | cos θ x , i | s x , i | sin θ x , i | s y , i | cos θ y , i | s y , i | sin θ y , i )
λ ( s i ) = log [ P ( s i = s 0 | r i ) P ( s i s 0 | r i ) ]
P ( s i | r i ) = P ( r i | s i ) P ( s i ) s P ( r i | s i ) P ( s i )
L ( v ^ j ) = log [ s i : v j = 0 exp ( λ ( s i ) ) s i : v j = 1 exp ( λ ( s i ) ) ]

Metrics