Abstract

The output power of linearly polarized Nd:YAG lasers is typically limited by thermally induced birefringence, which causes depolarization. However, this effect can be reduced either by use of some kind of depolarization compensation or by use of crystals which are cut in [110]- and [100]-direction, instead of the common [111]-direction. Investigations of the intrinsic reduction of the depolarization by use of these crystals are presented. To our knowledge, this is the first probe beam-experiment describing a comparison between [100]-, [110]- and [111]-cut Nd:YAG crystals in a pump power regime between 100 and 200 W. It is demonstrated that the depolarization can be reduced by a factor of 6 in [100]-cut crystals. The simulations reveal that a reduction of depolarization by use of a [110]-cut crystal in comparison with a [100]-cut crystal only becomes possible at pump powers in the kW region. Analysis also shows that the bifocusing for [100]-cut is slightly smaller and more asymmetrical than for [111]-cut.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Murdough and C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35(30), 5925–5936 (1996).
    [CrossRef]
  2. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
    [CrossRef]
  3. W. A. Clarkson, N. S. Felgate, and D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24(12), 820–822 (1999).
    [CrossRef] [PubMed]
  4. J. J. Morehead, “Compensation of laser thermal depolarization using free space,” IEEE J. Sel. Top. Quantum Electron. 13(3), 498–501 (2007).
    [CrossRef]
  5. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd Laser Rods as a Function of Growth Direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
    [CrossRef]
  6. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
    [CrossRef]
  7. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [CrossRef]
  8. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
    [CrossRef]
  9. J. F. Nye, Physical properties of crystals (Oxford University Press, 1957, 1985).
  10. W. Koechner and D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (2nd ed., Springer, 1988).
  12. R. Wilhelm, D. Freiburg, M. Frede, D. Kracht, and C. Fallnich, “Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers,” Opt. Express 17(10), 8229–8236 (2009).
    [CrossRef] [PubMed]
  13. I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17(7), 5496–5501 (2009).
    [CrossRef] [PubMed]
  14. I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products (7th ed., Academic Press, 2007)

2009 (2)

2007 (1)

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” IEEE J. Sel. Top. Quantum Electron. 13(3), 498–501 (2007).
[CrossRef]

2002 (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

1999 (1)

1996 (2)

M. P. Murdough and C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35(30), 5925–5936 (1996).
[CrossRef]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

1980 (1)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

1971 (1)

1970 (1)

W. Koechner and D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

1967 (1)

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

Clarkson, W. A.

Denman, C. A.

Dixon, R. W.

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Fallnich, C.

Felgate, N. S.

Frede, M.

Freiburg, D.

Hanna, D. C.

Khazanov, E.

Koechner, W.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd Laser Rods as a Function of Growth Direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Kracht, D.

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Morehead, J. J.

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” IEEE J. Sel. Top. Quantum Electron. 13(3), 498–501 (2007).
[CrossRef]

Mukhin, I.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Murdough, M. P.

Palashov, O.

Rice, D. K.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd Laser Rods as a Function of Growth Direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Taira, T.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Wilhelm, R.

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Koechner and D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Morehead, “Compensation of laser thermal depolarization using free space,” IEEE J. Sel. Top. Quantum Electron. 13(3), 498–501 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Other (3)

J. F. Nye, Physical properties of crystals (Oxford University Press, 1957, 1985).

W. Koechner, Solid-State Laser Engineering (2nd ed., Springer, 1988).

I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series, and Products (7th ed., Academic Press, 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics