Abstract

A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links using selection transmit diversity over exponential atmospheric turbulence channels with intensity modulation and direct detection is derived when non-uniform on-off keying (OOK) formats are used. In this strong turbulence free-space optical (FSO) scenario, average capacity is investigated subject to an average optical power constraint and not only to an average electrical power constraint when the transmit diversity technique assumed is based on the selection of the optical path with a greater value of irradiance. Simulation results for the mutual information are further demonstrated to confirm the analytical results for different diversity orders.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels

Antonio García-Zambrana, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez
Opt. Express 18(6) 5356-5366 (2010)

Transmit alternate laser selection with time diversity for FSO communications

Antonio García-Zambrana, Rubén Boluda-Ruiz, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez
Opt. Express 22(20) 23861-23874 (2014)

Rate-adaptive FSO links over atmospheric turbulence channels by jointly using repetition coding and silence periods

Antonio García-Zambrana, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez
Opt. Express 18(24) 25422-25440 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
    [Crossref]
  2. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
    [Crossref]
  3. A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
    [Crossref]
  4. B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
    [Crossref]
  5. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
    [Crossref] [PubMed]
  6. H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008).
    [Crossref]
  7. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels,” J. Lightwave Technol. 27(8), 974–979 (2009).
    [Crossref]
  8. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.
  9. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
    [Crossref]
  10. M. Simon and V. Vilnrotter, “Alamouti-Type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005).
    [Crossref]
  11. C. Abou-Rjeily and W. Fawaz, “Space-Time Codes for MIMO Ultra-Wideband Communications and MIMO Free-Space Optical Communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008).
    [Crossref]
  12. W. O. Popoola and Z. Ghassemlooy, “BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence,” J. Lightwave Technol. 27(8), 967–973 (2009).
    [Crossref]
  13. N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
    [Crossref]
  14. K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).
  15. U. Madhow, Fundamentals of Digital Communication (Cambridge University Press, 2008).
  16. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley & Sons, New York, 2006).
  17. A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997).
    [Crossref]
  18. J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003-Fall Vehicular Technology Conference 2003 IEEE 58th, vol. 1, pp. 168–172 (2003).
  19. J. Li and M. Uysal, “Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection,” in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654–2658 (2003).
  20. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
    [Crossref]
  21. J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw. 4(9), 586–601 (2005).
    [Crossref]
  22. A. A. Farid and S. Hranilovic, “Design of non-uniform capacity-approaching signaling for optical wireless intensity channels,” in Proc. IEEE International Symposium on Information Theory ISIT 2008, pp. 2327–2331 (2008).
  23. A. A. Farid and S. Hranilovic, “Outage capacity with non-uniform signaling for free-space optical channels,” in Proc. 24th Biennial Symposium on Communications, pp. 204–207 (2008).
  24. A. Farid and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Commun. 27(9), 1553–1563 (2009).
    [Crossref]
  25. S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004).
    [Crossref]
  26. S. Z. Denic, I. Djordjevic, J. Anguita, B. Vasic, and M. A. Neifeld, “Information Theoretic Limits for Free-Space Optical Channels With and Without Memory,” J. Lightwave Technol. 26(19), 3376–3384 (2008).
    [Crossref]
  27. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).
  28. Wolfram Research, Inc., Mathematica, version 7.0 ed. (Wolfram Research, Inc., Champaign, Illinois, 2008).

2010 (2)

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
[Crossref] [PubMed]

K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).

2009 (8)

W. O. Popoola and Z. Ghassemlooy, “BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence,” J. Lightwave Technol. 27(8), 967–973 (2009).
[Crossref]

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
[Crossref]

A. Farid and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Commun. 27(9), 1553–1563 (2009).
[Crossref]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
[Crossref]

H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels,” J. Lightwave Technol. 27(8), 974–979 (2009).
[Crossref]

2008 (3)

C. Abou-Rjeily and W. Fawaz, “Space-Time Codes for MIMO Ultra-Wideband Communications and MIMO Free-Space Optical Communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008).
[Crossref]

H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008).
[Crossref]

S. Z. Denic, I. Djordjevic, J. Anguita, B. Vasic, and M. A. Neifeld, “Information Theoretic Limits for Free-Space Optical Channels With and Without Memory,” J. Lightwave Technol. 26(19), 3376–3384 (2008).
[Crossref]

2005 (2)

M. Simon and V. Vilnrotter, “Alamouti-Type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005).
[Crossref]

J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw. 4(9), 586–601 (2005).
[Crossref]

2004 (1)

S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004).
[Crossref]

2001 (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
[Crossref]

1997 (1)

A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997).
[Crossref]

Abou-Rjeily, C.

C. Abou-Rjeily and W. Fawaz, “Space-Time Codes for MIMO Ultra-Wideband Communications and MIMO Free-Space Optical Communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008).
[Crossref]

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
[Crossref]

Andrews, L.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
[Crossref]

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
[Crossref]

Anguita, J.

Çagiral, E.

K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).

Castillo-Vazquez, B.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
[Crossref]

Castillo-Vazquez, C.

B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
[Crossref]

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

Castillo-Vázquez, B.

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
[Crossref] [PubMed]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.

Castillo-Vázquez, C.

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
[Crossref] [PubMed]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley & Sons, New York, 2006).

Cowley, W.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

Davaslioglu, K.

K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).

Denic, S. Z.

Djordjevic, I.

Fabregas, A. Guillen i

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

Fafalios, M. E.

Farid, A.

A. Farid and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Commun. 27(9), 1553–1563 (2009).
[Crossref]

Farid, A. A.

A. A. Farid and S. Hranilovic, “Design of non-uniform capacity-approaching signaling for optical wireless intensity channels,” in Proc. IEEE International Symposium on Information Theory ISIT 2008, pp. 2327–2331 (2008).

A. A. Farid and S. Hranilovic, “Outage capacity with non-uniform signaling for free-space optical channels,” in Proc. 24th Biennial Symposium on Communications, pp. 204–207 (2008).

Fawaz, W.

C. Abou-Rjeily and W. Fawaz, “Space-Time Codes for MIMO Ultra-Wideband Communications and MIMO Free-Space Optical Communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008).
[Crossref]

Garcia-Zambrana, A.

B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
[Crossref]

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

García-Zambrana, A.

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
[Crossref] [PubMed]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.

Ghassemlooy, Z.

Goldsmith, A. J.

A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997).
[Crossref]

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).

Hiniesta-Gomez, A.

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

Hopen, C.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
[Crossref]

Hranilovic, S.

A. Farid and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Commun. 27(9), 1553–1563 (2009).
[Crossref]

S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004).
[Crossref]

A. A. Farid and S. Hranilovic, “Outage capacity with non-uniform signaling for free-space optical channels,” in Proc. 24th Biennial Symposium on Communications, pp. 204–207 (2008).

A. A. Farid and S. Hranilovic, “Design of non-uniform capacity-approaching signaling for optical wireless intensity channels,” in Proc. IEEE International Symposium on Information Theory ISIT 2008, pp. 2327–2331 (2008).

Karagianni, E. A.

Karagiannidis, G. K.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

Koca, M.

K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).

Kschischang, F. R.

S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004).
[Crossref]

Letzepis, N.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

Li, J.

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003-Fall Vehicular Technology Conference 2003 IEEE 58th, vol. 1, pp. 168–172 (2003).

J. Li and M. Uysal, “Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection,” in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654–2658 (2003).

Madhow, U.

U. Madhow, Fundamentals of Digital Communication (Cambridge University Press, 2008).

Neifeld, M.

Neifeld, M. A.

Nguyen, K.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

Nistazakis, H. E.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
[Crossref]

H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels,” J. Lightwave Technol. 27(8), 974–979 (2009).
[Crossref]

Phillips, R.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
[Crossref]

Phillips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
[Crossref]

Popoola, W. O.

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).

Sandalidis, H. G.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008).
[Crossref]

Simon, M.

M. Simon and V. Vilnrotter, “Alamouti-Type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005).
[Crossref]

Thomas, J. A.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley & Sons, New York, 2006).

Tombras, G. S.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
[Crossref]

H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average Capacity of Optical Wireless Communication Systems Over Atmospheric Turbulence Channels,” J. Lightwave Technol. 27(8), 974–979 (2009).
[Crossref]

Tsiftsis, T. A.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
[Crossref]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008).
[Crossref]

Tsigopoulos, A. D.

Uysal, M.

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

J. Li and M. Uysal, “Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection,” in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654–2658 (2003).

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003-Fall Vehicular Technology Conference 2003 IEEE 58th, vol. 1, pp. 168–172 (2003).

Varaiya, P. P.

A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997).
[Crossref]

Vasic, B.

Vilnrotter, V.

M. Simon and V. Vilnrotter, “Alamouti-Type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005).
[Crossref]

Electron. Lett. (2)

B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-Form BER Expression for FSO Links with Transmit Laser Selection over Exponential Atmospheric Turbulence Channels,” Electron. Lett. 45 (23), 1185–1187 (2009).
[Crossref]

H. G. Sandalidis and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008).
[Crossref]

IEEE J. Sel. Areas Commun. (3)

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27(9), 1709–1719 (2009).
[Crossref]

C. Abou-Rjeily and W. Fawaz, “Space-Time Codes for MIMO Ultra-Wideband Communications and MIMO Free-Space Optical Communications with PPM,” IEEE J. Sel. Areas Commun. 26(6), 938–947 (2008).
[Crossref]

A. Farid and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Commun. 27(9), 1553–1563 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels,” IEEE Photon. Technol. Lett. 21 (14), 1017–1019 (2009).
[Crossref]

IEEE Trans. Inf. Theory (2)

A. J. Goldsmith and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997).
[Crossref]

S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004).
[Crossref]

IEEE Trans. Wireless Commun. (2)

M. Simon and V. Vilnrotter, “Alamouti-Type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wireless Commun. 4(1), 35–39 (2005).
[Crossref]

T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wireless Commun. 8(2), 951–957 (2009).
[Crossref]

IET Communications (1)

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Communications 3(8), 1402–1409 (2009).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Opt. Eng. (1)

M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001).
[Crossref]

Opt. Express (2)

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18 (6), 5356–5366 (2010).
[Crossref] [PubMed]

K. Davaslioğlu, E. Çağiral, and M. Koca, “Free space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 16,618–16,627 (2010).

Other (10)

U. Madhow, Fundamentals of Digital Communication (Cambridge University Press, 2008).

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley & Sons, New York, 2006).

J. Li and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003-Fall Vehicular Technology Conference 2003 IEEE 58th, vol. 1, pp. 168–172 (2003).

J. Li and M. Uysal, “Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection,” in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654–2658 (2003).

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Bellingham, WA: SPIE Press, 2001).
[Crossref]

A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the Capacity of FSO Links over Gamma-Gamma Atmospheric Turbulence Channels Using OOK Signaling,” EURASIP Journal on Wireless Communications and Networking2010. Article ID 127657, 9 pages, 2010. doi:10.1155/2010/127657.

A. A. Farid and S. Hranilovic, “Design of non-uniform capacity-approaching signaling for optical wireless intensity channels,” in Proc. IEEE International Symposium on Information Theory ISIT 2008, pp. 2327–2331 (2008).

A. A. Farid and S. Hranilovic, “Outage capacity with non-uniform signaling for free-space optical channels,” in Proc. 24th Biennial Symposium on Communications, pp. 204–207 (2008).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).

Wolfram Research, Inc., Mathematica, version 7.0 ed. (Wolfram Research, Inc., Champaign, Illinois, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Maximization over the input distribution p of the capacity bound, i.e. C 1(γ) in (13), and mutual information, i.e. C 2(γ) in (17), for the atmospheric turbulent optical channel and the non-turbulent case when κ = 20, a rectangular pulse shape with ξ = 1 and different diversity orders are adopted.

Fig. 2.
Fig. 2.

Mutual information in (16) versus the input distribution p for values of SNR of γ = −5 dB 2(a) and γ = −10 dB 2(b) and different diversity orders together with the non-turbulent case.

Fig. 3.
Fig. 3.

Mean value (E[Im ]) 3(a) and equivalent scintillation index (SIm ) 3(b) of the equivalent turbulence model configured by the MISO system under study versus the number of laser sources L.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I m = max j = 1 , 2 , L I j
y ( t ) = η i m ( t ) x ( t ) h ( t ) + z ( t )
f I j ( i j ) = e i j , i j 0
f I m ( i m ) = L Σ n = 1 L ( L 1 n 1 ) ( 1 ) n 1 e n i m
x ( t ) = Σ k = a k ( 1 p ) T b P opt G ( f = 0 ) g ( t k T b ) = Σ k = a k ( 1 p ) P opt T b E g G ( f = 0 ) ϕ ( t k T b )
d = ( 1 p ) P opt T b ξ
θ = W W 1 E g G ( f ) 2 d f
C = max p 0 I ( X ; Y i m ) f I m ( i m ) d i m
I ( X ; Y i m ) 1 2 log 2 ( 1 + σ X rx 2 N o 2 )
I ( X ; Y i m ) 1 2 log 2 ( 1 + ( ( 1 p ) 1 ) P opt 2 i m 2 T b ξ θ N o 2 )
C ( γ , p ) 0 1 2 log 2 ( 1 + ( 1 p 1 ) κ ξ θ γ 2 i m 2 ) f I m ( i m ) d i m H B ( p )
C ( γ , p ) 2 L Σ n = 1 L ( 1 ) n 1 ( L 1 n 1 ) ( si ( n h ( p , γ ) ) sin ( n h ( p , γ ) ) + ci ( n h ( p , γ ) ) cos ( n h ( p , γ ) ) ) n ln ( 4 )
C 1 ( γ ) = max p C ( γ , p )
Y = A X I m + Z , X { 0 , 1 } ,     Z ~ N ( 0 , 1 )
I ( X ; Y i m ) = Σ x = 0 1 P X ( x ) f Y ( y x , i m ) log 2 ( f Y ( y x , i m ) Σ r = 0 , 1 P X ( r ) f Y ( y x = r , i m ) ) d y
I ( X ; Y ) = 0 I ( X ; Y i m ) f I m ( i m ) d i m
C 2 ( γ ) = max p I ( X ; Y )
θ = κ 2 T b κ 2 T b T b sin 2 ( π T b f ) ( π T b f ) 2 d f
E [ I m ] = L Σ n = 1 L ( 1 ) n 1 ( L 1 n 1 ) 0 i m e n i m d i m = Σ n = 1 L ( 1 ) n 1 n ( L n ) = Σ n = 1 L 1 n
E [ I m 2 ] = L Σ n = 1 L ( 1 ) n 1 ( L 1 n 1 ) 0 i m 2 e n i m d i m = 2 Σ n = 1 L ( 1 ) n 1 n 2 ( L n )

Metrics