Abstract

We explain a pulse compression mechanism reported in picosecond Raman lasers pumped by continuous trains of mode-locked pulses. Our theoretical model is based on transient Raman scattering equations, and shows good agreement with the experimental results. The model reveals that the compression effect is produced by a combination of group velocity walk-off and strong pump pulse depletion. We predict the possibilities and the limitations of this technique for constructing highly efficient, low cost, ultrafast Raman lasers in the visible.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
    [CrossRef] [PubMed]
  2. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,” Opt. Lett. 20(14), 1562–1564 (1995).
    [CrossRef] [PubMed]
  3. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005).
    [CrossRef] [PubMed]
  4. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  5. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  6. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18(5), 5289–5294 (2010).
    [CrossRef] [PubMed]
  7. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [CrossRef] [PubMed]
  8. D. J. Spence, E. Granados, and R. P. Mildren, “Mode-locked picosecond diamond Raman laser,” Opt. Lett. 35(4), 556–558 (2010).
    [CrossRef] [PubMed]
  9. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
    [CrossRef]
  10. A. I. Vodchits, A. G. Shvedko, V. A. Orlovich, V. P. Kozich, and W. Werncke, “Stimulated Raman amplification of ultrashort seed pulses in compressed methane,” J. Opt. Soc. Am. B 22(2), 453–458 (2005).
    [CrossRef]
  11. V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
    [CrossRef]
  12. P. Straka and W. Rudolph, “Numerical simulations of pulsed and quasi-cw regimes of synchronously pumped Raman oscillators,” Appl. Phys. B 79(6), 707–712 (2004).
    [CrossRef]
  13. P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
    [CrossRef]
  14. P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  15. M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
    [CrossRef]

2010 (2)

2009 (1)

2006 (1)

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

2005 (3)

2004 (3)

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

P. Straka and W. Rudolph, “Numerical simulations of pulsed and quasi-cw regimes of synchronously pumped Raman oscillators,” Appl. Phys. B 79(6), 707–712 (2004).
[CrossRef]

R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
[CrossRef] [PubMed]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

2000 (1)

P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
[CrossRef]

1999 (1)

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

1995 (1)

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Aguiló, M.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Basiev, T. T.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Bertasiene, A.

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

Boer, V.

Cavallari, M.

Cerný, P.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Convery, M.

Dement'ev, A.

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

Díaz, F.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Driscoll, T. J.

Esposito, E.

Gale, G. M.

Gerritsen, H.

Girdauskas, V.

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

Girkin, J. M.

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[CrossRef] [PubMed]

Granados, E.

Hache, F.

Jelínková, H.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Kazragyte, R.

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

Kozich, V. P.

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

McConnell, G.

McKay, T.

Mildren, R.

Mildren, R. P.

Nicholson, J. W.

P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
[CrossRef]

Nikolov, V.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Orlovich, V. A.

Palero, J.

Pask, H.

Pask, H. M.

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Piper, J.

Pujol, M. C.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Rico, M.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Rudolph, W.

P. Straka and W. Rudolph, “Numerical simulations of pulsed and quasi-cw regimes of synchronously pumped Raman oscillators,” Appl. Phys. B 79(6), 707–712 (2004).
[CrossRef]

P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
[CrossRef]

Shvedko, A. G.

Solans, X.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Solé, R.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Spence, D. J.

Sterenborg, H. J. C. M.

Straka, P.

P. Straka and W. Rudolph, “Numerical simulations of pulsed and quasi-cw regimes of synchronously pumped Raman oscillators,” Appl. Phys. B 79(6), 707–712 (2004).
[CrossRef]

P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
[CrossRef]

Vijverberg, J.

Vodchits, A. I.

Werncke, W.

Zaldo, C.

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

Zverev, P. G.

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Appl. Phys. B (2)

P. Straka and W. Rudolph, “Numerical simulations of pulsed and quasi-cw regimes of synchronously pumped Raman oscillators,” Appl. Phys. B 79(6), 707–712 (2004).
[CrossRef]

M. C. Pujol, M. Rico, C. Zaldo, R. Solé, V. Nikolov, X. Solans, M. Aguiló, and F. Díaz, “Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals,” Appl. Phys. B 68(2), 187–197 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microsc. Res. Tech. (1)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. Straka, J. W. Nicholson, and W. Rudolph, “Synchronously pumped H2 Raman laser,” Opt. Commun. 178(1-3), 175–180 (2000).
[CrossRef]

V. Girdauskas, R. Kazragyte, A. Bertasiene, and A. Dement'ev, “Cascaded compression of the first and second Stokes pulses during forward transient stimulated Raman amplification,” Opt. Commun. 265(2), 664–671 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Prog. Quantum Electron. (3)

P. Cerný, H. Jelínková, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (397 KB)     
» Media 2: MOV (411 KB)     
» Media 3: MOV (388 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical z-fold cavity setup of a synchronously pumped mode-locked solid-state Raman oscillator

Fig. 2
Fig. 2

Measured (squares) and simulated (solid red line) data showing (a) output pulse durations as a function of cavity length detuning and (b) Stokes peak power at different cavity length detunings.

Fig. 3
Fig. 3

Pulse shapes for pump (blue line) and Stokes (red line) pulses at different cavity lengths before (left) and after (right) the KGW crystal: (a) Δx = −300 μm (Media 1) (b) Δx = −30 μm (Media 2), (c) Δx = + 8 μm (Media 3).

Fig. 4
Fig. 4

Output Stokes pulses for a range of cavity length detunings. The peak power is 2.3 times higher for Δx = + 8 μm compared to Δx = −30 μm for maximum output power

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q ' t v S Q ' x + 1 T 2 Q ' = i c μ S μ L 16 π ω S T 2 E L E S *
1 v S E S t = i g S ω S μ S E L ( Q ' ) *
( 1 v S v L ) E L x + 1 v L E L t = i g S ω L μ L E S Q '
Q ' = m c μ S μ L ω 0 ( 1 2 n ) 4 π ω S ( α / q ) T 2 Q

Metrics