Abstract

Deposition of a conformal nanoscale polymer coating was characterized using a fiber SPR sensor. The sensor platform consisted of an unmodified gold-coated single mode fiber where SPR was excited through the coupling of the core mode into the cladding modes using a Tilted Fiber Bragg Grating. The results from this study show how the sensor can monitor in real time the formation of polyelectrolyte coatings during a process consisting of several stages of immersion. The experimental data was further calibrated by simulations and Atomic Force Microscope imaging allowing us to determine the thickness and refractive index of the adsorbed polyelectrolyte.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  2. Y. Y. Shevchenko, D. A. D. Blair, M. C. DeRosa, and J. Albert, “DNA Target Detection Using Gold-coated Tilted Fiber Bragg Gratings in Aqueous Media,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008).
  3. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  4. L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express 18(11), 11464–11471 (2010).
    [CrossRef] [PubMed]
  5. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  6. B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
    [CrossRef]
  7. G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
    [CrossRef]
  8. H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
    [CrossRef] [PubMed]
  9. Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
    [CrossRef] [PubMed]
  10. Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
    [CrossRef] [PubMed]
  11. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
    [CrossRef]
  12. F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
    [CrossRef]
  13. S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules 32(24), 8153–8160 (1999).
    [CrossRef]
  14. Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
    [CrossRef]
  15. F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
    [CrossRef]
  16. D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge, 1998).
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer –Verlag, 1988).
  18. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuator B 12(3), 213–220 (1993).
    [CrossRef]
  19. G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors,” J. Mater. Sci. Mater. Electron. 18(S1), 327–330 (2007).
    [CrossRef]
  20. A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).
  21. R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
    [CrossRef]
  22. G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [CrossRef]
  23. A. Ianoul and A. Bergeron, “Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles,” Langmuir 22(24), 10217–10222 (2006).
    [CrossRef] [PubMed]
  24. M. Schönhoff, “Layered polyelectrolyte complexes: physics of formation and molecular properties,” J. Phys. Condens. Matter 15(49), R1781–R1808 (2003).
    [CrossRef]
  25. J. A. Jaber and J. B. Schlenoff, “Counterions and water in polyelectrolyte multilayers: a tale of two polycations,” Langmuir 23(2), 896–901 (2007).
    [CrossRef] [PubMed]
  26. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
    [CrossRef]
  29. S. T. Dubas and J. B. Schlenoff, “Swelling and smoothing of polyelectrolyte multilayers by salt,” Langmuir 17(25), 7725–7727 (2001).
    [CrossRef]

2010 (3)

2009 (2)

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

2007 (4)

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors,” J. Mater. Sci. Mater. Electron. 18(S1), 327–330 (2007).
[CrossRef]

J. A. Jaber and J. B. Schlenoff, “Counterions and water in polyelectrolyte multilayers: a tale of two polycations,” Langmuir 23(2), 896–901 (2007).
[CrossRef] [PubMed]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[CrossRef] [PubMed]

C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Ianoul and A. Bergeron, “Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles,” Langmuir 22(24), 10217–10222 (2006).
[CrossRef] [PubMed]

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

2003 (1)

M. Schönhoff, “Layered polyelectrolyte complexes: physics of formation and molecular properties,” J. Phys. Condens. Matter 15(49), R1781–R1808 (2003).
[CrossRef]

2002 (1)

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

2001 (2)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

S. T. Dubas and J. B. Schlenoff, “Swelling and smoothing of polyelectrolyte multilayers by salt,” Langmuir 17(25), 7725–7727 (2001).
[CrossRef]

1999 (2)

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules 32(24), 8153–8160 (1999).
[CrossRef]

1998 (1)

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

1995 (1)

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

1993 (2)

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuator B 12(3), 213–220 (1993).
[CrossRef]

1992 (1)

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1970 (1)

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

1965 (1)

Albert, J.

Alonso, R.

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

Alperovich, L. I.

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

Ariga, K.

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

Arregui, F. J.

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

Bai, S.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Bai, Y.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Bergeron, A.

A. Ianoul and A. Bergeron, “Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles,” Langmuir 22(24), 10217–10222 (2006).
[CrossRef] [PubMed]

Caruso, F.

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

Chan, C. F.

Chen, C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Claus, R. O.

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

Cooper, K. L.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Dakka, M. A.

Decher, G.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[CrossRef]

Dong, S.

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Du, Y.

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Dubas, S. T.

S. T. Dubas and J. B. Schlenoff, “Swelling and smoothing of polyelectrolyte multilayers by salt,” Langmuir 17(25), 7725–7727 (2001).
[CrossRef]

S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules 32(24), 8153–8160 (1999).
[CrossRef]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Fu, Y.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Furlong, D. N.

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

Homola, J.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Hong, J. D.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[CrossRef]

Ianoul, A.

A. Ianoul and A. Bergeron, “Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles,” Langmuir 22(24), 10217–10222 (2006).
[CrossRef] [PubMed]

Ichinose, I.

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

Jaber, J. A.

J. A. Jaber and J. B. Schlenoff, “Counterions and water in polyelectrolyte multilayers: a tale of two polycations,” Langmuir 23(2), 896–901 (2007).
[CrossRef] [PubMed]

Jafari, A.

Jeong, H.

H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuator B 12(3), 213–220 (1993).
[CrossRef]

Kashyap, R.

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors,” J. Mater. Sci. Mater. Electron. 18(S1), 327–330 (2007).
[CrossRef]

Kim, D. W.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Kunitake, T.

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

Kvasnicka, P.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Laronche, A.

Li, B.

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Liu, Y.

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

Lowe, C. R.

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

Malitson, I. H.

Matias, I. R.

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

Mikhailov, B. A.

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

Millington, R.

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

Nemova, G.

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors,” J. Mater. Sci. Mater. Electron. 18(S1), 327–330 (2007).
[CrossRef]

Payne, F. P.

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

Pelayo, J.

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

Piliarik, M.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Popova, S. I.

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

Pyun, W.

H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
[CrossRef] [PubMed]

Qiu, D.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Rajarajan, M.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Schlenoff, J. B.

J. A. Jaber and J. B. Schlenoff, “Counterions and water in polyelectrolyte multilayers: a tale of two polycations,” Langmuir 23(2), 896–901 (2007).
[CrossRef] [PubMed]

S. T. Dubas and J. B. Schlenoff, “Swelling and smoothing of polyelectrolyte multilayers by salt,” Langmuir 17(25), 7725–7727 (2001).
[CrossRef]

S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules 32(24), 8153–8160 (1999).
[CrossRef]

Schmitt, J.

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[CrossRef]

Schönhoff, M.

M. Schönhoff, “Layered polyelectrolyte complexes: physics of formation and molecular properties,” J. Phys. Condens. Matter 15(49), R1781–R1808 (2003).
[CrossRef]

Shao, L. Y.

Shevchenko, Y.

Shevchenko, Y. Y.

Song, D.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Spackova, B.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Sun, J.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Sun, Y.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Themistos, C.

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Thomson, D. J.

Tian, Y.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Tornos, J.

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

Tubb, A. J. C.

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

Villuendas, F.

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

Wang, A.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Wang, E.

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Wang, L.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Wang, Z.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Xu, H.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Yang, S. Y.

H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
[CrossRef] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuator B 12(3), 213–220 (1993).
[CrossRef]

Zhang, H.

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Zhang, X.

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

Zhang, Y.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Zhou, M.

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Zolotarev, V. M.

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

Anal. Chim. Acta (1)

Y. Sun, D. Song, Y. Bai, L. Wang, Y. Tian, and H. Zhang, “Improvement of surface plasmon resonance biosensor with magnetic beads via assembled polyelectrolyte layers,” Anal. Chim. Acta 624(2), 294–300 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

Y. Du, C. Chen, B. Li, M. Zhou, E. Wang, and S. Dong, “Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination,” Biosens. Bioelectron. 25(8), 1902–1907 (2010).
[CrossRef] [PubMed]

Electron. Lett. (2)

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, “Single mode optical fibre surface plasma wave chemical sensor,” Electron. Lett. 37, 1–5 (1995).

J. Mater. Sci. Mater. Electron. (1)

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors,” J. Mater. Sci. Mater. Electron. 18(S1), 327–330 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

M. Schönhoff, “Layered polyelectrolyte complexes: physics of formation and molecular properties,” J. Phys. Condens. Matter 15(49), R1781–R1808 (2003).
[CrossRef]

Langmuir (4)

J. A. Jaber and J. B. Schlenoff, “Counterions and water in polyelectrolyte multilayers: a tale of two polycations,” Langmuir 23(2), 896–901 (2007).
[CrossRef] [PubMed]

S. T. Dubas and J. B. Schlenoff, “Swelling and smoothing of polyelectrolyte multilayers by salt,” Langmuir 17(25), 7725–7727 (2001).
[CrossRef]

F. Caruso, D. N. Furlong, K. Ariga, I. Ichinose, and T. Kunitake, “Characterization of polyelectrolyte−protein multilayer films by atomic force microscopy, scanning electron microscopy, and fourier transform infrared reflection−absorption spectroscopy,” Langmuir 14(16), 4559–4565 (1998).
[CrossRef]

A. Ianoul and A. Bergeron, “Spatially inhomogeneous enhancement of fluorescence by a monolayer of silver nanoparticles,” Langmuir 22(24), 10217–10222 (2006).
[CrossRef] [PubMed]

Macromol. Rapid Commun. (2)

Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film,” Macromol. Rapid Commun. 23(4), 256–259 (2002).
[CrossRef]

H. Jeong, W. Pyun, and S. Y. Yang, ““Gold nanoparticle-hybridized “Nano-sponge” polymer coatings to enhance the reliability and sensitivity of biosensors,” Macromol. Rapid Commun. 30(13), 1109–1115 (2009).
[CrossRef] [PubMed]

Macromolecules (1)

S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules 32(24), 8153–8160 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Opt. Commun. (1)

V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. I. Popova, “Dispersion and absorption of liquid water in infra-red and radio-frequency regions,” Opt. Commun. 1(6), 301–302 (1970).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Sens. Actuator B (2)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuator B 12(3), 213–220 (1993).
[CrossRef]

B. Spackova, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuator B 139(1), 199–203 (2009).
[CrossRef]

Sens. Actuators A Phys. (1)

R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘in-line’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A Phys. 37-38, 187–192 (1993).
[CrossRef]

Sensors Actuator B (1)

F. J. Arregui, I. R. Matias, Y. Liu, and R. O. Claus, “Optical fiber humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method,” Sensors Actuator B 59(1), 54–59 (1999).
[CrossRef]

Thin Solid Films (1)

G. Decher, J. D. Hong, and J. Schmitt, “Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces,” Thin Solid Films 210–211, 831–835 (1992).
[CrossRef]

Other (3)

D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge, 1998).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer –Verlag, 1988).

Y. Y. Shevchenko, D. A. D. Blair, M. C. DeRosa, and J. Albert, “DNA Target Detection Using Gold-coated Tilted Fiber Bragg Gratings in Aqueous Media,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Analogy between the TFBG and prism-based excitation of plasmon waves by resonant tunneling across a metal layer from a material with a refractive index higher than the surrounding medium.

Fig. 2
Fig. 2

Transmission spectrum of a bare TFBG with 10° of tilt measured in air.

Fig. 3
Fig. 3

Transmission spectrum of a TFBG-SPR sensor interrogated using polarized light and immersed in the polyelectrolyte solution. The location of the SPR-coupled set of cladding modes is shown with the circle. The arrow points at the cladding modes whose amplitudes are used to infer the SPR shift (see text for details).

Fig. 4
Fig. 4

Change of the SPR wavelength observed during the immersions in the polymer solutions and during soaking in water. Each 10-min immersion in the polymer solution is followed by a 1-min immersion in deionized water. Inset shows SPR change observed in water. Shown data was smoothed using moving average filter.

Fig. 5
Fig. 5

The SPR wavelength change during the deposition of a thicker polymer film (measurements acquired only in the polymer solutions).

Fig. 6
Fig. 6

(a) AFM image of the gold coating before deposition of the polyelectrolyte film. (b) AFM image of the gold coating with 30 monolayers of the polyelectrolytes. The image was taken near the boundary of a scratch which was done to remove the polymer coating in order to determine its thickness.

Fig. 7
Fig. 7

One of the measured height profiles of the coating across the boundary of the scratch on the surface of the fiber.

Fig. 8
Fig. 8

Distribution of the effective indices of the modes (real and imaginary parts) supported by a gold-coated circular waveguide when (a) the waveguide was immersed in water and had no coating (pink curve); (b) and when the waveguide was immersed in water and had a 30 nm dielectric coating with a refractive index of 1.435, (black curve).

Fig. 9
Fig. 9

Black dots: change of the plasmon effective index (from the position of the centre of the envelope used to fit SPR-coupled resonances) due to the deposition of thin dielectric film on the surface of the gold coating. Straight colored lines: simulated changes of the plasmon effective index as a function of the thickness of a deposited film, for various values of the film refractive index.

Tables (1)

Tables Icon

Table 1 Refractive indices of the materials used

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β p = ω c ε e x t ε m ( ε e x t + ε m ) .
β p = β i n c > β e x t
β c o r e ( λ i ) + β c l a d i ( λ i ) = 2 π cos ( θ ) Λ ,

Metrics