Abstract

We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000).
    [CrossRef]
  2. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
    [CrossRef]
  3. J. Walker, “HotBits: Genuine Random Numbers, Generated by Radioactive Decay,” http://www.fourmilab.ch/hotbits/ .
  4. M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
    [CrossRef]
  5. D. S. Ornstein, “Ergodic theory, randomness, and “chaos”,” Science 243(4888), 182–187 (1989).
    [CrossRef] [PubMed]
  6. G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circ. Syst. 37(9), 1157–1164 (1990).
    [CrossRef]
  7. T. Stojanovski and L. Kocarev, “Chaos-based random number generators - Part I: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001).
    [CrossRef]
  8. T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
    [CrossRef]
  9. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [CrossRef]
  10. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
    [CrossRef] [PubMed]
  11. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [CrossRef]
  12. K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
    [CrossRef] [PubMed]
  13. A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
    [CrossRef]
  14. A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic laser diode subject to optical injection,” Opt. Lett. 34(8), 1144–1146 (2009).
    [CrossRef] [PubMed]
  15. H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, “Ultrafast walk-off-free nonlinear optical loop mirror by a simplified configuration for 320-Gbit / s time-division multiplexing signal demultiplexing,” Opt. Lett. 27(17), 1555–1557 (2002).
    [CrossRef] [PubMed]
  16. K. Ikeda, J. Abdul, S. Namiki, and K. Kitayama, “Optical quantizing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer,” Opt. Express 13(11), 4296–4302 (2005).
    [CrossRef] [PubMed]
  17. G. P. Agrawal, “Fiber interferometer,” in Applications of nonlinear fiber optics, P. L. Kelley, ed., (Academic press, San Diego, 2001), Chap. 3.
  18. G. P. Agrawal, Nonlinear fiber optics, 3rd Edition (Academic Press, San Diego, 2001) Chap. 2.
  19. J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
    [CrossRef] [PubMed]
  20. K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
    [CrossRef]
  21. K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
    [CrossRef] [PubMed]
  22. Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
    [CrossRef] [PubMed]
  23. A. Rukhin, et al., “NIST Statistical Tests Suite,” http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html .
  24. K. Huybrechts, A. Ali, T. Tanemura, Y. Nakano, and G. Morthier, “Numerical and experimental study of the switching times and energies of DFB-laser based All-optical flip-flops”, presented at the International Conference on Photonics in Switching, Pisa, Italy, 15–19 Sept. 2009.

2010 (2)

2009 (3)

2008 (6)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
[CrossRef] [PubMed]

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[CrossRef] [PubMed]

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

2005 (1)

2003 (1)

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

2002 (1)

2001 (2)

T. Stojanovski and L. Kocarev, “Chaos-based random number generators - Part I: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001).
[CrossRef]

T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
[CrossRef]

2000 (1)

C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000).
[CrossRef]

1990 (1)

G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circ. Syst. 37(9), 1157–1164 (1990).
[CrossRef]

1989 (1)

D. S. Ornstein, “Ergodic theory, randomness, and “chaos”,” Science 243(4888), 182–187 (1989).
[CrossRef] [PubMed]

Abdul, J.

Aida, H.

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[CrossRef] [PubMed]

Baets, R.

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[CrossRef] [PubMed]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

Bernstein, G. M.

G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circ. Syst. 37(9), 1157–1164 (1990).
[CrossRef]

Bucci, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Chujo, W.

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Connelly, J. A.

C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000).
[CrossRef]

Davis, P.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

D'Oosterlinck, W.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

Dynes, J. F.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

Germani, L.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Harayama, T.

He, H. C.

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

Hirano, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Huybrechts, K.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[CrossRef] [PubMed]

Ikeda, K.

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Inoue, T.

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[CrossRef] [PubMed]

Kitayama, K.

Kocarev, L.

T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
[CrossRef]

T. Stojanovski and L. Kocarev, “Chaos-based random number generators - Part I: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001).
[CrossRef]

Koyamada, Y.

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Lieberman, M. A.

G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circ. Syst. 37(9), 1157–1164 (1990).
[CrossRef]

Luzzi, R.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Miyoshi, Y.

Morikatsu, S.

Morthier, G.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[CrossRef] [PubMed]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Namiki, S.

Okumura, H.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Ornstein, D. S.

D. S. Ornstein, “Ergodic theory, randomness, and “chaos”,” Science 243(4888), 182–187 (1989).
[CrossRef] [PubMed]

Petrie, C. S.

C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000).
[CrossRef]

Pihl, J.

T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
[CrossRef]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[CrossRef] [PubMed]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[CrossRef] [PubMed]

Sawaguchi, C.

Sharpe, A. W.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

Shields, A. J.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Sotobayashi, H.

Stojanovski, T.

T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
[CrossRef]

T. Stojanovski and L. Kocarev, “Chaos-based random number generators - Part I: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001).
[CrossRef]

Tobioka, H.

Trifiletti, A.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Uchida, A.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Varanonuovo, M.

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Wang, A. B.

Wang, J. F.

Wang, Y. C.

Yamazaki, T.

Yoshimori, S.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

K. Hirano, T. Yamazaki, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori, K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18(6), 5512–5524 (2010).
[CrossRef] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yuan, Z. L.

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

Zhang, J. Z.

Appl. Phys. Lett. (1)

J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. B. Wang, Y. C. Wang, and H. C. He, “Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback,” IEEE Photon. Technol. Lett. 20(19), 1633–1635 (2008).
[CrossRef]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, “Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode,” IEEE Photon. Technol. Lett. 20(1), 18–20 (2008).
[CrossRef]

IEEE Trans. Circ. Syst. (1)

G. M. Bernstein and M. A. Lieberman, “Secure random number generation using chaotic circuits,” IEEE Trans. Circ. Syst. 37(9), 1157–1164 (1990).
[CrossRef]

IEEE Trans. Circ. Syst. I Fundam. Theory Appl. (3)

T. Stojanovski and L. Kocarev, “Chaos-based random number generators - Part I: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 281–288 (2001).
[CrossRef]

T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number generators - Part II: practical realization,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 48(3), 382–385 (2001).
[CrossRef]

C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000).
[CrossRef]

IEEE Trans. Comput. (1)

M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC,” IEEE Trans. Comput. 52(4), 403–409 (2003).
[CrossRef]

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103(2), 024102 (2009).
[CrossRef] [PubMed]

Science (1)

D. S. Ornstein, “Ergodic theory, randomness, and “chaos”,” Science 243(4888), 182–187 (1989).
[CrossRef] [PubMed]

Other (5)

J. Walker, “HotBits: Genuine Random Numbers, Generated by Radioactive Decay,” http://www.fourmilab.ch/hotbits/ .

G. P. Agrawal, “Fiber interferometer,” in Applications of nonlinear fiber optics, P. L. Kelley, ed., (Academic press, San Diego, 2001), Chap. 3.

G. P. Agrawal, Nonlinear fiber optics, 3rd Edition (Academic Press, San Diego, 2001) Chap. 2.

A. Rukhin, et al., “NIST Statistical Tests Suite,” http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html .

K. Huybrechts, A. Ali, T. Tanemura, Y. Nakano, and G. Morthier, “Numerical and experimental study of the switching times and energies of DFB-laser based All-optical flip-flops”, presented at the International Conference on Photonics in Switching, Pisa, Italy, 15–19 Sept. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed all-optical RNG: (a) UWB chaotic laser; (b) all-optical sampler; (c) all-optical comparator. DFB, single-mode distributed-feedback laser; PC, polarization controller; EDFA, erbium-doped optical fiber amplifier; VA, variable attenuator; 30/70, 30/70 optical fiber coupler; 50/50, 50/50 optical fiber coupler; HNLF, highly nonlinear fiber; BPF, bandpass filter; CW, continuous-wave light; λ/4DFB, λ/4-shifted DFB laser.

Fig. 2
Fig. 2

Bistability curve: laser output power as a function of the power of the injected light [21]. There are two typical threshold values: Pth2 is 1.7 mW and Pth1 is 1.6 mW

Fig. 3
Fig. 3

Schematic diagram of the all-optical XOR gate. RNG, random number generator; EDFA, erbium-doped fiber amplifier; WDM, WDM coupler; 50/50, 50/50 coupler; HNLF, highly nonlinear fiber; BPF, bandpass filter; DFB, single-mode distributed-feedback laser; CW, continuous-wave light.

Fig. 4
Fig. 4

Power spectrum of the generated UWB chaotic laser. The dash-line is corresponding to the bandwidth of UWB chaotic laser about 10.5GHz.

Fig. 5
Fig. 5

Temporal waveforms: (a) the output of UWB chaotic laser (b) sampling clock.(c) the output of all-optical sampler.

Fig. 6
Fig. 6

Raw random bit sequence generated by the all-optical RNG.

Fig. 7
Fig. 7

Output signal of all-optical XOR gate: all-optical random number sequence.

Tables (2)

Tables Icon

Table 1 The truth table of all-optical XOR gate

Tables Icon

Table 2 Results of NIST statistical test suite. Using 1000 samples of 1 Mbits data and significance level α = 0.01, for “Success”, the P-value (uniformity of p-values) should be larger than 0.0001 and the proportion should be greater than 0.9805608. As advised by NIST, the Fast Fourier Transform test is disregarded

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E d t = 1 + i α 2 [ g ( N N 0 ) 1 + ε | E | 2 τ p 1 ] E + κ f τ in E ( t τ ) × exp ( i 2 π ν s τ ) + κ j τ in E j exp ( i Δ ν t ) ,
d N d t = I q V N τ N g ( N N 0 ) 1 + ε | E | 2 | E | 2 ,
E j z + α 2 E j + i 2 β 2 2 E j T 2 = i γ ( | E j | 2 + 2 k j | E k | 2 ) E j ,
P out = 1 2 P in [ 1 cos ( φ CW φ CCW ) ] ,
P ' o u t = 1 2 P ' i n [ 1 cos ( Φ arm 1 Φ arm 2 ) ] ,

Metrics