Abstract

The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Halldórsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17(2), 240–244 (1978).
    [CrossRef] [PubMed]
  2. K. Sassen and G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21(17), 3162–3165 (1982).
    [CrossRef] [PubMed]
  3. G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, “Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver,” Appl. Opt. 25(17), 2886–2890 (1986).
    [CrossRef] [PubMed]
  4. H. Kuze, H. Kinjo, Y. Sakurada, and N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37(15), 3128–3132 (1998).
    [CrossRef]
  5. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005).
    [CrossRef] [PubMed]
  6. Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18(23), 3908–3910 (1979).
    [CrossRef] [PubMed]
  7. K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28(12), 2194–2195 (1989).
    [CrossRef] [PubMed]
  8. S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
    [CrossRef]
  9. S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
    [CrossRef]
  10. U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41(3), 511–514 (2002).
    [CrossRef] [PubMed]
  11. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network”. In Laser Remote Sensing of the Atmosphere, A. Dabas, C. Loth, and J. Pelon, eds., selected papers of the 20th International Laser Radar Conference (Edition Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  12. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
    [CrossRef] [PubMed]
  13. F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).
  14. F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.
  15. C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
    [CrossRef]
  16. C. Münkel, and R. Roininen, “Investigation of boundary layer structures with ceilometer using a novel robust algorithm”, Proc. 90th American Meteorological Society Annual Meeting: 15th Symposium on Meteorological Observation and Instrumentation (2010), 5.3.
  17. C. A. Hostetler, Z. Liu, J. Reagan, M. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP Algorithm Theoretical Basis Document”, PC-SCI-201, NASA Langley Res. Cent., Hampton, Va. http://www-calipso.larc.nasa.gov/resources/project_documentation.php (2006).
  18. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
    [CrossRef]
  19. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [CrossRef] [PubMed]
  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [CrossRef] [PubMed]
  21. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
    [CrossRef] [PubMed]
  22. Y. Sasano and H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23(1), 11–13 (1984).
    [CrossRef]
  23. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24(22), 3929–3932 (1985).
    [CrossRef] [PubMed]
  24. L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).
  25. K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
    [CrossRef]
  26. T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
    [CrossRef]
  27. C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
    [CrossRef]
  28. K. Sassen and B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31(11), 1275–1285 (1992).
    [CrossRef]
  29. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37(12), 2464–2472 (1998).
    [CrossRef]
  30. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
    [CrossRef]
  31. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41(30), 6470–6476 (2002).
    [CrossRef] [PubMed]
  32. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41(18), 3685–3699 (2002).
    [CrossRef] [PubMed]

2008 (1)

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

2007 (2)

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

2006 (1)

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

2005 (1)

2002 (3)

2000 (1)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

1998 (2)

1997 (2)

S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
[CrossRef]

S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
[CrossRef]

1992 (2)

1989 (1)

1987 (1)

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
[CrossRef]

1986 (1)

1985 (2)

1984 (2)

1982 (1)

1981 (1)

1979 (1)

1978 (1)

1972 (1)

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[CrossRef]

Alados-Arboledas, L.

F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).

F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.

Amodeo, A.

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

Ancellet, G. M.

Ansmann, A.

Belo, N.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Bravo-Aranda, J. A.

F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.

Brogniez, G.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Brothers, A. M.

Browell, E. V.

Chen, W. N.

Chepfer, H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Chiang, C. W.

Cho, B. Y.

K. Sassen and B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31(11), 1275–1285 (1992).
[CrossRef]

Chudzynski, S.

D’Amico, G.

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

Dell’Aglio, M.

Dho, S. W.

S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
[CrossRef]

S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
[CrossRef]

Dilley, A. C.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
[CrossRef]

Dodd, G. C.

Elias, T.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Eloranta, E. W.

Eresmaa, N.

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

Fernald, F. G.

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[CrossRef]

Flamant, C.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Flamant, P. H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Flatau, P. J.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

Formenti, P.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Griaznov, V.

Guerrero-Rascado, J. L.

F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.

F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).

Halldórsson, T.

Helas, G.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Herman, B. M.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[CrossRef]

Hirayama, C.

Ismail, S.

Kardas, A. E.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

Karppinen, A.

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

Kavaya, M. J.

Kinjo, H.

Klett, J. D.

Kolgotin, A.

Kong, H. J.

S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
[CrossRef]

S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
[CrossRef]

Kuze, H.

Langerholc, J.

Markowicz, K. M.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

Menzies, R. T.

Michaelis, W.

Michimoto, K.

Mona, L.

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

Müller, D.

Münkel, C.

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

Nakane, H.

Navas-Guzmán, F.

F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).

F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.

Nee, J. B.

Okuda, M.

Pappalardo, G.

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

Park, Y. J.

S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
[CrossRef]

S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
[CrossRef]

Pelon, J.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Pereira, S.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
[CrossRef]

Räsänen, J.

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

Reagan, J. A.

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[CrossRef]

Remiszewska, J.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

Riebesell, M.

Sakurada, Y.

Sasano, Y.

Sassen, K.

K. Sassen and B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31(11), 1275–1285 (1992).
[CrossRef]

K. Sassen and G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21(17), 3162–3165 (1982).
[CrossRef] [PubMed]

Scott, J. C.

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
[CrossRef]

Shimizu, H.

Silva, A. M.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Stacewicz, T.

Stelmaszczyk, K.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005).
[CrossRef] [PubMed]

Takeuchi, N.

Tomine, K.

Trouillet, V.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

Veselovskii, I.

Wagner, F.

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Wandinger, U.

Weitkamp, C.

Whiteman, D. N.

Woeste, L.

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

Wöste, L.

Appl. Opt. (18)

T. Halldórsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17(2), 240–244 (1978).
[CrossRef] [PubMed]

Y. Sasano, H. Shimizu, N. Takeuchi, and M. Okuda, “Geometrical form factor in the laser radar equation: an experimental determination,” Appl. Opt. 18(23), 3908–3910 (1979).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
[CrossRef] [PubMed]

K. Sassen and G. C. Dodd, “Lidar crossover function and misalignment effects,” Appl. Opt. 21(17), 3162–3165 (1982).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[CrossRef] [PubMed]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24(22), 3929–3932 (1985).
[CrossRef] [PubMed]

G. M. Ancellet, M. J. Kavaya, R. T. Menzies, and A. M. Brothers, “Lidar telescope overlap function and effects of misalignment for unstable resonator transmitter and coherent receiver,” Appl. Opt. 25(17), 2886–2890 (1986).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[CrossRef] [PubMed]

E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37(12), 2464–2472 (1998).
[CrossRef]

H. Kuze, H. Kinjo, Y. Sakurada, and N. Takeuchi, “Field-of-view dependence of lidar signals by use of Newtonian and Cassegrainian telescopes,” Appl. Opt. 37(15), 3128–3132 (1998).
[CrossRef]

U. Wandinger and A. Ansmann, “Experimental determination of the lidar overlap profile with Raman lidar,” Appl. Opt. 41(3), 511–514 (2002).
[CrossRef] [PubMed]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41(18), 3685–3699 (2002).
[CrossRef] [PubMed]

W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41(30), 6470–6476 (2002).
[CrossRef] [PubMed]

K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005).
[CrossRef] [PubMed]

Y. Sasano and H. Nakane, “Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23(1), 11–13 (1984).
[CrossRef]

K. Tomine, C. Hirayama, K. Michimoto, and N. Takeuchi, “Experimental determination of the crossover function in the laser radar equation for days with a light mist,” Appl. Opt. 28(12), 2194–2195 (1989).
[CrossRef] [PubMed]

S. W. Dho, Y. J. Park, and H. J. Kong, “Experimental determination of a geometric form factor in a lidar equation for an inhomogeneous atmosphere,” Appl. Opt. 24(24), 6009–6010 (1997).
[CrossRef]

Boundary-Layer Meteorol. (1)

C. Münkel, N. Eresmaa, J. Räsänen, and A. Karppinen, “Retrieval of mixing height and dust concentration with Lidar ceilometer,” Boundary-Layer Meteorol. 124(1), 117–128 (2007).
[CrossRef]

Geophys. Res. Lett. (1)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effect: application to spaceborne and airborne backscatter lidar measurements during the LITE mission and E LITE campaign,” Geophys. Res. Lett. 26(14), 2203–2206 (2000).
[CrossRef]

J. Appl. Meteorol. (2)

K. Sassen and B. Y. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31(11), 1275–1285 (1992).
[CrossRef]

F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of Aerosol Height Distribution by Lidar,” J. Appl. Meteorol. 11(3), 482–489 (1972).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

K. M. Markowicz, P. J. Flatau, A. E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste, “Ceilometer Retrieval of the Boundary Layer Vertical Aerosol Extinction Structure,” J. Atmos. Ocean. Technol. 25(6), 928–943 (2008).
[CrossRef]

J. Atmos. Sci. (1)

C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part VI: Optical properties of mid-latitudemand tropical cirrus,” J. Atmos. Sci. 44(4), 729–747 (1987).
[CrossRef]

J. Geophys. Res. (1)

T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, “Aerosol extinction in a remote continental region of the Iberian Peninsula during summer,” J. Geophys. Res. 111(D14), D14204 (2006), doi:.
[CrossRef]

Ópt. Pur, Apl. (1)

F. Navas-Guzmán, J. L. Guerrero-Rascado, J. A. Bravo-Aranda, and L. Alados-Arboledas, “On the use cirrus clouds for elastic lidar calibration”, Ópt. Pur, Apl. submitted.

Opt. Rew. (1)

S. W. Dho, Y. J. Park, and H. J. Kong, “Application of geometrical form factor in differential absorption lidar measurement,” Opt. Rew. 4(4), 521–526 (1997).
[CrossRef]

Proc. SPIE (1)

L. Mona, A. Amodeo, G. D’Amico, and G. Pappalardo, “First comparisons between CNR-IMAA multiwavelength Raman lidar measurements and CALIPSO measurements,” Proc. SPIE 6750, 6750–35 (2007).

Rom. J. Physiol. (1)

F. Navas-Guzmán, J. L. Guerrero-Rascado, and L. Alados-Arboledas, “Calibration of 1064nm-backscatter profiles with a multiwavelength Raman lidar,” Rom. J. Physiol. (to be published).

Other (3)

J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network”. In Laser Remote Sensing of the Atmosphere, A. Dabas, C. Loth, and J. Pelon, eds., selected papers of the 20th International Laser Radar Conference (Edition Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

C. Münkel, and R. Roininen, “Investigation of boundary layer structures with ceilometer using a novel robust algorithm”, Proc. 90th American Meteorological Society Annual Meeting: 15th Symposium on Meteorological Observation and Instrumentation (2010), 5.3.

C. A. Hostetler, Z. Liu, J. Reagan, M. Vaughan, D. Winker, M. Osborn, W. H. Hunt, K. A. Powell, and C. Trepte, “CALIOP Algorithm Theoretical Basis Document”, PC-SCI-201, NASA Langley Res. Cent., Hampton, Va. http://www-calipso.larc.nasa.gov/resources/project_documentation.php (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a) Attenuated backscatter profiles derived from lidar (black, overlap effect is ignored) and from ceilometer (grey) on 7th June 2006. For the lidar procedure a lidar ratio of 30 sr was assumed. b) Attenuated backscatter profiles derived from lidar for step 1 (black, overlap effect is ignored), next steps (dashed-grey, overlap is corrected iteratively), and from ceilometer (grey) on 7th June 2006. 25 iterations were required.

Fig. 2
Fig. 2

Experimental infrared mean overlap function obtained, for CAPEX (full line), using the direct and iterative methods. Error bars denote one standard deviation.

Fig. 3
Fig. 3

Different models tested for the mean experimental infrared overlap function computed during CAPEX using the direct and iterative methods. The comparison for the best fitting (model 2) is also shown.

Tables (1)

Tables Icon

Table 1 Different parameterizations tested for the mean experimental infrared overlap function computed during CAPEX using the direct and iterative methods.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = C O ( z ) z 2 β ( z ) T 2 ( z )
P ( z ) = C O ( z ) z 2 β a t t ( z )
β a t t , c e i l o m , u n a f f e c t e d ( z ) P ( z ) z 2 O 1 ( z )
β a t t , l i d a r , a f f e c t e d ( z ) P ( z ) z 2
β a t t , c e i l o m ( z ) β a t t , l i d a r ( z ) β a t t , c e i l o m ( z ) P ( z ) z 2 O 1 ( z ) P ( z ) z 2 P ( z ) z 2 O 1 ( z ) = 1 O ( z ) Δ O ( z )
Δ O ( i ) = β a t t , c e i l o m , u n a f f e c t e d ( z ) β ( i ) a t t , l i d a r , a f f e c t e d ( z ) β a t t , c e i l o m , u n a f f e c t e d ( z )
P ( i + 1 ) ( z ) = P ( i ) ( z ) [ 1 + Δ O ( i ) ( z ) ]
O ( z ) = P ( 1 ) ( z ) / P ( e n d ) ( z )
O ( z ) = P ( z ) z 2 C β a t t ( z )

Metrics