Abstract

The modal distribution of a novel elliptical hollow optical fiber is experimentally and numerically characterized. The fiber has a central elliptical air hole surrounded by a germanosilicate lanceolate ring core. Experiments reveal that the fiber behaves like a dual core waveguide and it is found that the differential group delay of each core decreases with wavelength with a PMD coefficient slope of ~10−2 ps/m/THz. Experimental results are also compared with numerical modeling based on scanning electron microscopy images.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
    [CrossRef]
  2. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
    [CrossRef]
  3. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31(12), 1911–1913 (2006).
    [CrossRef] [PubMed]
  4. W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
    [CrossRef]
  5. G. Bouwmans, F. Luan, J. Knight, P. St J Russell, L. Farr, B. Mangan, and H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003).
    [CrossRef] [PubMed]
  6. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided Wave Analysis of Hollow Optical Fiber for Mode-Coupling Device Applications,” J. Lightwave Technol. 27(22), 4919–4926 (2009).
    [CrossRef]
  7. I.-K. Hwang, Y.-H. Lee, K. Oh, and D. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004).
    [CrossRef] [PubMed]
  8. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31(18), 2681–2683 (2006).
    [CrossRef] [PubMed]
  9. J. J. McCarthy and J. J. Friel, “Wavelength Dispersive Spectrometer and Energy Dispersive Spectrometer Automation: Past and Future Development,” Microsc. Microanal. 7(2), 150–158 (2001).
  10. C. W. Passchier and R. A. J. Trouw, in Micro-tectonics, (Springer, 1996).
  11. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett. 8(2), 122–123 (1983).
    [CrossRef] [PubMed]
  12. A. Galtarossa and C. R. Menyuk, eds., Polarization Mode Dispersion, (Springer, New York, 2005).
  13. X. Chen, M. J. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12(16), 3888–3893 (2004).
    [CrossRef] [PubMed]
  14. P. L. Chu and R. A. Sammut, “Analytical method for calculationof stresses and material birefringence in polarization maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
    [CrossRef]
  15. W. Primack and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
    [CrossRef]
  16. M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
    [CrossRef]
  17. M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).
  18. COMSOL Multiphysics, version 3.5.
  19. M. Wegmuller, M. Legré, N. Gisin, T. Ritari, H. Ludvigsen, J. R. Folkenberg, and K. P. Hansen, “Experimental investigation of wavelength and temperature dependence of phase and group birefringence in photonic crystal fibers,” in Proceedings of 6th International Conference on Transparent Optical Networks ICTON 2004 (Poland, 2004).
  20. L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
    [CrossRef] [PubMed]

2010 (1)

M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).

2009 (1)

2006 (3)

2005 (1)

2004 (3)

2003 (1)

2002 (1)

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

2001 (1)

J. J. McCarthy and J. J. Friel, “Wavelength Dispersive Spectrometer and Energy Dispersive Spectrometer Automation: Past and Future Development,” Microsc. Microanal. 7(2), 150–158 (2001).

1996 (1)

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

1984 (1)

P. L. Chu and R. A. Sammut, “Analytical method for calculationof stresses and material birefringence in polarization maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[CrossRef]

1983 (1)

1959 (1)

W. Primack and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Addison, C. J.

Anwar, R. M.

M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).

Blades, M. W.

Bock, W. J.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

Bouwmans, G.

Carberry, J. P.

Chen, X.

Choi, S.

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
[CrossRef]

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

Chu, P. L.

P. L. Chu and R. A. Sammut, “Analytical method for calculationof stresses and material birefringence in polarization maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[CrossRef]

Crowley, A. M.

Eom, T.

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

Farr, L.

Fontaine, M.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

Friel, J. J.

J. J. McCarthy and J. J. Friel, “Wavelength Dispersive Spectrometer and Energy Dispersive Spectrometer Automation: Past and Future Development,” Microsc. Microanal. 7(2), 150–158 (2001).

Gallagher, M. T.

Han, S. R.

Hwang, I.-K.

Jeong, Y.

Jung, H.

Jung, Y.

Kikuchi, K.

Kim, S.

Knight, J.

Koch, K. W.

Konorov, S. O.

Lee, B.

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

Lee, J. W.

Lee, S.

Lee, Y.-H.

Li, M. J.

Liu, Z.

Luan, F.

Mangan, B.

McCarthy, J. J.

J. J. McCarthy and J. J. Friel, “Wavelength Dispersive Spectrometer and Energy Dispersive Spectrometer Automation: Past and Future Development,” Microsc. Microanal. 7(2), 150–158 (2001).

Oh, K.

Okoshi, T.

Paek, U. C.

Park, J.

Payne, D.

Peng, W.

W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
[CrossRef]

Pickrell, G. R.

W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
[CrossRef]

Post, D.

W. Primack and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Primack, W.

W. Primack and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Sabert, H.

Sammut, R. A.

P. L. Chu and R. A. Sammut, “Analytical method for calculationof stresses and material birefringence in polarization maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[CrossRef]

Sarkar Rahat, M.

M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).

Schulze, H. G.

Shah Alam, M.

M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).

Shen, F.

W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
[CrossRef]

St J Russell, P.

Sun, J.

Turner, R. F. B.

Tzolov, V. P.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

Urbanczyk, W.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

Venkataraman, N.

Wang, A.

W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
[CrossRef]

Wood, W. A.

Wu, B.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

Yang, J.

Yu, J.

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

Yuan, L.

Zenteno, L. A.

IEEE Photon. Technol. Lett. (1)

S. Choi, T. Eom, J. Yu, B. Lee, and K. Oh, “Novel all-fiber bandpass filter based on hollow optical fiber,” IEEE Photon. Technol. Lett. 14(12), 1701–1703 (2002).
[CrossRef]

Int. J. Electron. Commun. Comput. Eng. (1)

M. Shah Alam, M. Sarkar Rahat, and R. M. Anwar, “Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects,” Int. J. Electron. Commun. Comput. Eng. 2, 1–6 (2010).

J. Appl. Phys. (1)

W. Primack and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

J. Lightwave Technol. (4)

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, and W. Urbanczyk, “Theoretical and Experimental Analysis of Thermal Stress Effects on Modal Polarization Properties of Highly Birefringent Optical Fibers,” J. Lightwave Technol. 14(4), 585–591 (1996).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol. 23(2), 524–532 (2005).
[CrossRef]

S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided Wave Analysis of Hollow Optical Fiber for Mode-Coupling Device Applications,” J. Lightwave Technol. 27(22), 4919–4926 (2009).
[CrossRef]

P. L. Chu and R. A. Sammut, “Analytical method for calculationof stresses and material birefringence in polarization maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[CrossRef]

Microsc. Microanal. (1)

J. J. McCarthy and J. J. Friel, “Wavelength Dispersive Spectrometer and Energy Dispersive Spectrometer Automation: Past and Future Development,” Microsc. Microanal. 7(2), 150–158 (2001).

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

W. Peng, G. R. Pickrell, F. Shen, and A. Wang, “Hollow fiber optic waveguide gas sensor for simultaneous monitoring of multiple gas species,” Proc. SPIE 5589, 1–7 (2004).
[CrossRef]

Other (4)

C. W. Passchier and R. A. J. Trouw, in Micro-tectonics, (Springer, 1996).

A. Galtarossa and C. R. Menyuk, eds., Polarization Mode Dispersion, (Springer, New York, 2005).

COMSOL Multiphysics, version 3.5.

M. Wegmuller, M. Legré, N. Gisin, T. Ritari, H. Ludvigsen, J. R. Folkenberg, and K. P. Hansen, “Experimental investigation of wavelength and temperature dependence of phase and group birefringence in photonic crystal fibers,” in Proceedings of 6th International Conference on Transparent Optical Networks ICTON 2004 (Poland, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic description of the EHOF preform manufacturing (figure not in scale).

Fig. 2
Fig. 2

(a) SEM picture of the cross section of the EHOF. (b) Detail of the doped region. (c) Garnet crystal and adjacent pressure shadows within a fine-grained dark matrix. Garnet diameter measures 2.5 cm.

Fig. 3
Fig. 3

Experimental setups: (a) Characterization of modal properties (ECL: external cavity laser; SMF: single mode fiber; Vidicon: infrared camera). (b) Characterization of polarization properties (PC: polarization controller; LP: linear polarizer; PD: photodiode).

Fig. 4
Fig. 4

(a) Images of output field at 1550 nm for different alignment of the injecting SMF taken with the infrared camera. (b) Solid red curves: normalized transmittance of the first core and second core for a given input SOP. Dashed blue curves: theoretical best fit. (c) Differential group delay per unit length of the first (blue) and second (red) core. Solid lines refer to experiments and dashed lines to numerical simulations.

Fig. 5
Fig. 5

Numerical results at λ = 1550 nm: (a) Material birefringence, nx−ny, induced by thermal stress and calculated with plain strain approximation. (b) Normalized power density of the four lowest modes. The arrows refer to the corresponding electric field vectors.

Fig. 6
Fig. 6

Numerical results: (a) Effective index vs. wavelength for the 4 propagating modes. (b) Birefringence of the two cores.

Metrics