Abstract

A simple and efficient technique for large-area manufacturing of concave microlens arrays (MLAs) on silica glasses with femtosecond (fs)-laser-enhanced chemical wet etching is demonstrated. By means of fs laser in situ irradiations followed by the hydrofluoric acid etching process, large area close-packed rectangular and hexagonal concave MLAs with diameters less than a hundred of micrometers are fabricated within a few hours. The fabricated MLAs exhibit excellent surface quality and uniformity. In contrast to the classic thermal reflow process, the presented technique is a maskless process and allows the flexible control of the size, shape and the packing pattern of the MLAs by adjusting the parameters such as the pulse energy, the number of shots and etching time.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [CrossRef] [PubMed]
  2. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
    [CrossRef] [PubMed]
  3. M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
    [CrossRef]
  4. A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
    [CrossRef] [PubMed]
  5. M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
    [CrossRef]
  6. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
    [CrossRef]
  7. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
    [CrossRef]
  8. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
    [CrossRef]
  9. J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
    [CrossRef]
  10. T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17(12), 9733–9747 (2009).
    [CrossRef] [PubMed]
  11. P. Ruffieux, T. Scharf, I. Philipoussis, H. P. Herzig, R. Voelkel, and K. J. Weible, “Two step process for the fabrication of diffraction limited concave microlens arrays,” Opt. Express 16(24), 19541–19549 (2008).
    [CrossRef] [PubMed]
  12. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
    [CrossRef]
  13. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
    [CrossRef] [PubMed]
  14. M. He, X. Yuan, J. Bu, and W. C. Cheong, “Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique,” Opt. Lett. 29(9), 1007–1009 (2004).
    [CrossRef] [PubMed]
  15. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [CrossRef] [PubMed]
  16. C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
    [CrossRef] [PubMed]
  17. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [CrossRef]
  18. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
    [CrossRef] [PubMed]
  19. K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
    [CrossRef]
  20. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
    [CrossRef]
  21. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [CrossRef]
  22. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16(24), 20029–20037 (2008).
    [CrossRef] [PubMed]
  23. S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
    [CrossRef]

2009 (3)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17(12), 9733–9747 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

2006 (5)

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
[CrossRef] [PubMed]

S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
[CrossRef] [PubMed]

S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
[CrossRef] [PubMed]

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[CrossRef]

2002 (4)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[CrossRef]

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[CrossRef]

2000 (2)

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

1995 (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Afrimzon, E.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Ams, M.

Baudach, S.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Bonse, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Brown, P. O.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

Bu, J.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Chang, S. I.

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[CrossRef]

Chen, F.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Chen, T.

T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17(12), 9733–9747 (2009).
[CrossRef] [PubMed]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Cheong, W. C.

Chiang, T. H.

Cho, S. H.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Cui, Z.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Davis, R. W.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

Dawes, J. M.

Dekker, P.

Deutsch, A.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Deutsch, M.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Du, J. L.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Fournier, J. M.

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[CrossRef]

Furusawa, K.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Gao, F.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Gao, F. H.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Guo, R.

Guo, Y. K.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

He, M.

Herzig, H. P.

Hou, X.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Hsu, C. C.

Huang, W.

Hurevich, I.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Juodkazis, S.

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Kautek, W.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kim, H.

Kim, J. J.

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[CrossRef]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

Kruger, J.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kumagai, H.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Lebovich, P.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Lee, B. K.

Lengeler, B.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Li, J.

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[CrossRef]

Little, D. J.

Liu, H.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Liu, S.

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Marshall, G. D.

Matsuo, S.

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Merenda, F.

Midorikawa, K.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Misawa, H.

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Obara, M.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Okada, T.

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[CrossRef]

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[CrossRef]

Philipoussis, I.

Rohner, J.

Ruffieux, P.

Salathé, R. P.

Scharf, T.

Schena, M.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

Shafran, Y.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Shalon, D.

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

Shin, D. H.

Si, J.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Snigirev, A.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

Snigireva, I.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

Su, J. Q.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Tabuchi, Y.

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Takahashi, K.

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Voelkel, R.

Wang, T.

Wang, X.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Wang, Z.

Weible, K. J.

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[CrossRef]

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

Withford, M. J.

Wu, C. Y.

Wu, J.

Wu, M. H.

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[CrossRef]

Xia, A.

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

Xiao, S.

Yang, H.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[CrossRef]

Yang, Q.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Yao, J.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Yoon, J. B.

Yuan, X.

Zhai, X.

Zhang, D.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Zhang, Y. X.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Zuo, T.

Zurgil, N.

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (3)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[CrossRef]

J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

S. Matsuo, Y. Tabuchi, T. Okada, S. Juodkazis, and H. Misawa, “Femtosecond laser assisted etching of quartz: microstructuring from inside,” Appl. Phys., A Mater. Sci. Process. 84(1-2), 99–102 (2006).
[CrossRef]

Biomed. Microdevices (1)

A. Deutsch, N. Zurgil, I. Hurevich, Y. Shafran, E. Afrimzon, P. Lebovich, and M. Deutsch, “Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population,” Biomed. Microdevices 8(4), 361–374 (2006).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6(9), 1112–1114 (1994).
[CrossRef]

J. Appl. Phys. (1)

K. Furusawa, K. Takahashi, S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, “Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst,” J. Appl. Phys. 87(4), 1604–1609 (2000).
[CrossRef]

J. Micromech. Microeng. (2)

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[CrossRef]

Langmuir (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[CrossRef]

Microelectron. Eng. (2)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3–4), 365–379 (2002).
[CrossRef]

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, “Coding gray-tone mask for refractive microlens fabrication,” Microelectron. Eng. 53(1-4), 531–534 (2000).
[CrossRef]

Nature (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996).
[CrossRef]

Opt. Commun. (1)

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, “Photoetching of spherical microlenses on glasses using a femtosecond laser,” Opt. Commun. 282(20), 4119–4123 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Science (1)

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270(5235), 467–470 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the fabrication process. First, the laser pulses are focused by an objective lens, inducing crater arrays on the sample surface. Then, the sample is treated by ultrasonic-assisted HF etching. Finally, the sample is cleaned by the ultrasonic bath in acetone, alcohol and deionized water, respectively. The inset presents the 3D profile of the rectangular microlens array.

Fig. 2
Fig. 2

Morphology revolution of the samples at different stage of the fabrication process. For (a)-(c) the rectangular microlens array, the chemical etching time, t, is 0, 45 and 90 min, respectively. The hexagonal-packed microlens array are present in (d)-(f), and t = 0, 25 and 45 min, respectively. The images are captured by an optical microscope with tungsten light source.

Fig. 3
Fig. 3

FE-SEM images of (a) the rectangular microlens array and (b) hexagonal microlens array.

Fig. 4
Fig. 4

The results of 3D measurements of the MLAs. (a) and (b), the cross-section and the 3D profiles of the rectangular microlens array. The aperture diameter, D, and the sag height, h, of the microlens array are about 67.05 μm and 10.28 μm, respectively. (c) and (d), the 3D and cross-section profiles of the hexagonal-packed microlens array. D = 30.54 μm, h = 3.35 μm.

Fig. 5
Fig. 5

Schematic of the optical system for the measurement of the focal length. The inset (bottom) is the CCD images of the sample surface (z = 0 μm) and the focal point (z = 84 μm).

Fig. 6
Fig. 6

The false images captured by the OM system for (a) rectangular microlens array and (b) hexagonal microlens array.

Fig. 7
Fig. 7

The evolutions of (a) the aperture diameter, D, and (b) the sag height, h, of the microlens versus the chemical etching time, τ.

Fig. 8
Fig. 8

FE-SEM images of the laser-induced craters (a) before the HF treatment and treated for (b) 1 min, (c) 5 min, (d) 20 min, (e) 30 min and (f) 50 min. Note the different scale bars.

Fig. 9
Fig. 9

Relationship between the processing parameters and the profile of microlenses. (a) and (b) show the energy dependency of aperture diameter, D, and sag height, h, respectively; (c) and (d) are the influence of the number of shots, N, on D, and h, respectively; (e) and (f) show the influence of E and N on the curvature radius of the microlens, respectively.

Tables (2)

Tables Icon

Table 1 Processing parameters used for the rectangular (Rec.) and hexagonal-packed (Hex.) MLAs

Tables Icon

Table 2 The measurement results of the MLAs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ D = 22.76 exp ( τ 11.69 ) + 26.04   ( μm ) τ [ 0 , 20 min ) D = 0.49 τ + 11.92   ( μm ) τ [ 20 min , + ) ,
{ h = exp ( 1.37 τ + 0.62 + 1.82 )   ( μm ) τ [ 0 , 20 min ) h = 0.002 τ + 6.17   ( μm ) τ [ 20 min , + ) .
{ V D = D τ = 1.95 exp ( τ 11.69 )   ( μm/min ) τ [ 0 , 20 min ) V D = D τ = 0.49   ( μm/min ) τ [ 20 min , + ) ,
{ V h = D τ = 1.37 ( τ + 0.62 ) 2 exp ( 1.37 τ + 0.62 + 1.82 )   ( μm/min ) τ [ 0 , 20 min ) V h = D τ = 0.002   ( μm/min ) τ [ 20 min , + ) ,

Metrics