Abstract

We propose a new technique of manipulating a metal particle in borosilicate glass. A metal particle that is heated by laser illumination heats the surrounding glass by radiation and conduction. A softened glass enabled metal particle migration. A 1-µm-thick platinum film was deposited on the back surface of a glass plate and irradiated with a green CW laser beam through the glass. As a result, the platinum film was melted and implanted into the glass as a particle. Platinum particles with diameters of 3 to 50 μm migrated at speeds up to 10 mm/s. In addition to platinum particles, nickel and austenitic stainless steel (SUS304) particles can be implanted.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [CrossRef] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  4. J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
    [CrossRef] [PubMed]
  5. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
    [CrossRef]
  6. F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
    [CrossRef]
  7. S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
    [CrossRef]
  8. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
    [CrossRef]
  9. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).
  10. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
    [CrossRef]
  11. M. Sitarski and M. Kerker, “Monte carlo simulation of photophoresis of submicron aerosol particles,” J. Atmos. Sci. 41(14), 2250–2262 (1984).
    [CrossRef]
  12. F. M. Weinert and D. Braun, “Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion,” J. Appl. Phys. 104(10), 104701 (2008).
    [CrossRef]
  13. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).
  14. S. I. Yakovlenko, “Physical processes upon the optical discharge propagation in optical fiber,” Laser Phys. 16(9), 1273–1290 (2006).
    [CrossRef]

2010

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

2009

F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
[CrossRef]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

2008

F. M. Weinert and D. Braun, “Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion,” J. Appl. Phys. 104(10), 104701 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

2006

S. I. Yakovlenko, “Physical processes upon the optical discharge propagation in optical fiber,” Laser Phys. 16(9), 1273–1290 (2006).
[CrossRef]

2004

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

2003

S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
[CrossRef]

1992

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

1990

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

1984

M. Sitarski and M. Kerker, “Monte carlo simulation of photophoresis of submicron aerosol particles,” J. Atmos. Sci. 41(14), 2250–2262 (1984).
[CrossRef]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Block, S. M.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Braun, D.

F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
[CrossRef]

F. M. Weinert and D. Braun, “Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion,” J. Appl. Phys. 104(10), 104701 (2008).
[CrossRef]

Cho, S. H.

S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Golyatina, R. I.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).

Hidai, H.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

Hirao, K.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Hiromatsu, K.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

Jiang, N.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Jiang, X. W.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Kerker, M.

M. Sitarski and M. Kerker, “Monte carlo simulation of photophoresis of submicron aerosol particles,” J. Atmos. Sci. 41(14), 2250–2262 (1984).
[CrossRef]

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Kumagai, H.

S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
[CrossRef]

Kuroiwa, Y.

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Midorikawa, K.

S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Narita, Y.

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Qiu, J. R.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Shirai, M.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Si, J.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Sitarski, M.

M. Sitarski and M. Kerker, “Monte carlo simulation of photophoresis of submicron aerosol particles,” J. Atmos. Sci. 41(14), 2250–2262 (1984).
[CrossRef]

Takeshima, N.

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Tanaka, S.

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Tkachev, A. N.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).

Tokura, H.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

Weinert, F. M.

F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
[CrossRef]

F. M. Weinert and D. Braun, “Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion,” J. Appl. Phys. 104(10), 104701 (2008).
[CrossRef]

Wuhr, M.

F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
[CrossRef]

Yakovlenko, S. I.

S. I. Yakovlenko, “Physical processes upon the optical discharge propagation in optical fiber,” Laser Phys. 16(9), 1273–1290 (2006).
[CrossRef]

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).

Yoshioka, M.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

Zhu, C. S.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

J. R. Qiu, X. W. Jiang, C. S. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. Engl. 43(17), 2230–2234 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. M. Weinert, M. Wuhr, and D. Braun, “Light driven microflow in ice,” Appl. Phys. Lett. 94(11), 113901 (2009).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60(7), 807–809 (1992).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. H. Cho, H. Kumagai, and K. Midorikawa, “In situ observation of dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(5), 755–761 (2003).
[CrossRef]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[CrossRef]

J. Am. Ceram. Soc.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93, 1597–1601 (2010).

J. Appl. Phys.

F. M. Weinert and D. Braun, “Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion,” J. Appl. Phys. 104(10), 104701 (2008).
[CrossRef]

J. Atmos. Sci.

M. Sitarski and M. Kerker, “Monte carlo simulation of photophoresis of submicron aerosol particles,” J. Atmos. Sci. 41(14), 2250–2262 (1984).
[CrossRef]

J. Non-Cryst. Solids

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Precipitation of silver particles by femtosecond laser pulses inside silver ion doped glass,” J. Non-Cryst. Solids 336(3), 234–236 (2004).
[CrossRef]

Laser Phys.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys. 14, 1429–1433 (2004).

S. I. Yakovlenko, “Physical processes upon the optical discharge propagation in optical fiber,” Laser Phys. 16(9), 1273–1290 (2006).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Nature

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of experimental setup.

Fig. 2
Fig. 2

Images of radiation from heated platinum particle. (a)-(c) Bright emission moving toward light source during laser irradiation and (d) platinum particle located in area where bright emission was observed (c). Laser power was 4.2 W.

Fig. 3
Fig. 3

SEM micrographs, EDS analysis results and X-ray maps of cross section of particle: (a) secondary electron micrograph, (b) EDS analysis results and X-ray maps of (c) Si and (d) Pt.

Fig. 4
Fig. 4

Images of platinum implantation in between laser illuminations. Laser power was 4.2 W.

Fig. 5
Fig. 5

Micrographs of modified zones: (a) bent with 20° and (b) curved modified. Laser power was 4.2 W.

Fig. 6
Fig. 6

Speeds of platinum particle migration under laser illumination at various fluences at focus.

Fig. 7
Fig. 7

Micrographs of platinum particles with different diameters implanted into glass. Thicknesses of deposited platinum films: (a) 0.1µm and (b) 5 µm. Laser powers were (a) 5 W and (b) 1.8 W.

Fig. 8
Fig. 8

Properties of metals for absorbent. Thermal conductivity vs melting point. ■: metals implanted into glass and □: metals not implanted into glass.

Fig. 9
Fig. 9

Calculated temperatures at center of heated spot. The thicknesses of the Ta, Pt, Tin and Ag films were 1µm, and those of SUS304, Ni and Cu foils were 10µm. × : melting temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c ρ t T ( t , z , r ) = k [ z 2 T ( t , z , r ) ] + 1 r r [ r k ( r T ( t , z , r ) ) ] + Q ( t , z , r ) .
Q = { z ( 1 R ) I ( r ) ( z = 0 ) 0                   ( z 0 ) .

Metrics