Abstract

We present a combination of self-interference microscopy with lateral super-resolution microscopy and introduce a novel approach for localizing a single nano-emitter to within a few nanometers in all three dimensions over a large axial range. We demonstrate nanometer displacements of quantum dots placed on top of polymer bilayers that undergo swelling when changing from an air to a water environment, achieving standard deviations below 10 nm for axial and lateral localization.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
    [CrossRef] [PubMed]
  2. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
    [CrossRef] [PubMed]
  3. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
    [CrossRef] [PubMed]
  4. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
    [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [CrossRef] [PubMed]
  6. B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
    [CrossRef] [PubMed]
  7. J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
    [CrossRef] [PubMed]
  8. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
    [CrossRef] [PubMed]
  9. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
    [CrossRef] [PubMed]
  10. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).
  11. P. V. Ganesan, and S. G. Boxer, “A membrane interferometer,” Proc. Natl. Acad. Sci. USA 106, 5627–5632 (2009).
    [CrossRef] [PubMed]
  12. L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
    [CrossRef] [PubMed]
  13. G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
    [CrossRef] [PubMed]
  14. A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
    [CrossRef]
  15. F. Aguet, S. Geissbuehler, I. Maerki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-d steerable filters,” Opt. Express 17, 6829–6848 (2009).
    [CrossRef] [PubMed]
  16. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
    [CrossRef]
  17. L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
    [CrossRef]
  18. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.) (Cambridge University Press, 1999).
    [PubMed]
  19. S. Gibson, and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in 3-dimensional light-microscopy,” J. Opt. Soc. Am. A 8, 1601–1613 (1991).
    [CrossRef]
  20. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
    [CrossRef] [PubMed]
  21. D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
    [CrossRef]
  22. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
    [CrossRef]
  23. M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
    [CrossRef]
  24. A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
    [CrossRef]
  25. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express 14, 7134–7143 (2006).
    [CrossRef] [PubMed]
  26. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  27. J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
    [CrossRef] [PubMed]
  28. B. J. Davis, A. K. Swan, M. S. Unlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low-signal nanoscale axial imaging,” J. Opt. Soc. Am. A 24, 3587–3599 (2007).
    [CrossRef]
  29. G. Decher, and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
    [CrossRef]
  30. K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
    [CrossRef] [PubMed]
  31. K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
    [CrossRef] [PubMed]
  32. N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
    [CrossRef]
  33. A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
    [CrossRef]

2009 (7)

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

P. V. Ganesan, and S. G. Boxer, “A membrane interferometer,” Proc. Natl. Acad. Sci. USA 106, 5627–5632 (2009).
[CrossRef] [PubMed]

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

F. Aguet, S. Geissbuehler, I. Maerki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-d steerable filters,” Opt. Express 17, 6829–6848 (2009).
[CrossRef] [PubMed]

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

2008 (8)

N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
[CrossRef]

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
[CrossRef] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express 14, 7134–7143 (2006).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

2005 (1)

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

2004 (3)

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
[CrossRef] [PubMed]

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

2003 (2)

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

2001 (1)

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[CrossRef] [PubMed]

1998 (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

1997 (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

1992 (1)

G. Decher, and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[CrossRef]

1991 (1)

1959 (1)

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[CrossRef]

Aguet, F.

Aksun, M.

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

Alvarez, M.

N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
[CrossRef]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Antelman, J.

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

Barnes, W.

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bilenca, A.

Biteen, J. S.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Bocchio, N. L.

N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bouma, B.

Bowman, G. R.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Boxer, S. G.

P. V. Ganesan, and S. G. Boxer, “A membrane interferometer,” Proc. Natl. Acad. Sci. USA 106, 5627–5632 (2009).
[CrossRef] [PubMed]

Brandenburg, B.

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

Cantor, C.

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Cantor, C. R.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

Carney, P. S.

Cheezum, M. K.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[CrossRef] [PubMed]

Chiari, M.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Cordes, T.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

Damin, F.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Davidson, M.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Davis, B.

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Davis, B. J.

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

G. Decher, and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[CrossRef]

di Carlo, G.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Dogan, M.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Egner, A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

Enderlein, J.

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

Engelhardt, J.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

Fetter, R.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Forthmann, C.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

Galbraith, C.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Galbraith, J.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Ganesan, P. V.

P. V. Ganesan, and S. G. Boxer, “A membrane interferometer,” Proc. Natl. Acad. Sci. USA 106, 5627–5632 (2009).
[CrossRef] [PubMed]

Geissbuehler, S.

Gibson, S.

Gillette, J.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Goldberg, B.

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Goldberg, B. B.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

B. J. Davis, A. K. Swan, M. S. Unlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low-signal nanoscale axial imaging,” J. Opt. Soc. Am. A 24, 3587–3599 (2007).
[CrossRef]

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

Goldberg, M. B.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

Gregor, I.

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

Guilford, W. H.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[CrossRef] [PubMed]

Hein, B.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
[CrossRef] [PubMed]

Hell, S. W.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
[CrossRef] [PubMed]

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Hess, H.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Huang, B.

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

Ippolito, S.

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Jacobsen, V.

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Jain, S.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

Jakobs, S.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

Jones, S.

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

Kanchanawong, P.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Karl, W.

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Karl, W. C.

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Knoll, W.

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
[CrossRef] [PubMed]

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

Kreiter, M.

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
[CrossRef] [PubMed]

Lanni, F.

Lasser, T.

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Liu, N.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Lord, S. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Lührmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Maerki, I.

Manley, S.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Michalet, X.

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

Moerner, W. E.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Moiseev, L.

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Ozcan, A.

Ozkumur, E.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Patra, D.

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Pavani, S. R. P.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Piestun, R.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Richards, B.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[CrossRef]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

Sauer, M.

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

Schmidt, R.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

Schmitt, J.

G. Decher, and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[CrossRef]

Schotland, J. C.

Shapiro, L.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Shtengel, G.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Sougrat, R.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Stefani, F.

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

Steinhauer, C.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

Swan, A.

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Swan, A. K.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

B. J. Davis, A. K. Swan, M. S. Unlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low-signal nanoscale axial imaging,” J. Opt. Soc. Am. A 24, 3587–3599 (2007).
[CrossRef]

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

Tearney, G.

Thompson, M. A.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Tinnefeld, P.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

Tselentis, N. K.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Twieg, R. J.

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Unger, A.

N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
[CrossRef]

Unlu, M.

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

Unlu, M. S.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

Unlü, M. S.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

B. J. Davis, A. K. Swan, M. S. Unlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low-signal nanoscale axial imaging,” J. Opt. Soc. Am. A 24, 3587–3599 (2007).
[CrossRef]

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

Unser, M.

Vasilev, K.

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
[CrossRef] [PubMed]

Vogelsang, J.

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

Walker, W. F.

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[CrossRef] [PubMed]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

Waterman, C.

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Weiss, S.

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

Wilking-Chang, C.

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

Willig, K. I.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
[CrossRef] [PubMed]

Wolf, E.

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[CrossRef]

Wurm, C. A.

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

Yalcin, A.

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

Yalçin, A.

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Zhuang, X.

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. Yalçin, F. Damin, E. Ozkumur, G. di Carlo, B. B. Goldberg, M. Chiari, and M. S. Unlü, “Direct observation of conformation of a polymeric coating with implications in microarray applications,” Anal. Chem. 81, 625–630 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Appl. Phys. Lett. 106, 2995–2999 (2009).

Biophys. J. (1)

M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J. 81, 2378–2388 (2001).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral self-interference fluorescence microscopy for subcellular imaging,” IEEE J. Sel. Top. Quantum Electron. 14, 217–225 (2008).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, B. Davis, S. Ippolito, W. Karl, B. Goldberg, and M. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

A. Swan, L. Moiseev, C. Cantor, and B. Davis, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron. 9, 294–300 (2003).
[CrossRef]

J. Appl. Phys. (1)

L. Moiseev, C. Cantor, M. Aksun, M. Dogan, B. Goldberg, A. Swan, and M. Unlu, “Spectral self-interference fluorescence microscopy,” J. Appl. Phys. 96, 5311–5315 (2004).
[CrossRef]

J. Chem. Phys. (2)

K. Vasilev, W. Knoll, and M. Kreiter, “Fluorescence intensities of chromophores in front of a thin metal film,” J. Chem. Phys. 120, 3439–3445 (2004).
[CrossRef] [PubMed]

K. Vasilev, F. Stefani, V. Jacobsen, W. Knoll, and M. Kreiter, “Reduced photobleaching of chromophores close to a metal surface,” J. Chem. Phys. 120, 6701–6704 (2004).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. C (1)

N. L. Bocchio, A. Unger, and M. Alvarez, “andM. Kreiter, “Thin layer sensing with multipolar plasmonic resonances,” J. Phys. Chem. C 112, 14355–14359 (2008).
[CrossRef]

Nano Lett. (1)

J. Antelman, C. Wilking-Chang, S. Weiss, and X. Michalet, “Nanometer distance measurements between multicolor quantum dots,” Nano Lett. 9, 2199–2205 (2009).
[CrossRef] [PubMed]

Nat. Methods (3)

R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5, 539–544 (2008).
[CrossRef] [PubMed]

B. Huang, S. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008).
[CrossRef] [PubMed]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, and L. Shapiro, “andW. E.Moerner, “Super-resolution imaging in live caulobacter crescentus cells using photoswitchable eyfp,” Nat. Methods 5, 947–949 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “Dna conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103, 2623–2628 (2006).
[CrossRef] [PubMed]

G. Shtengel, J. Galbraith, C. Galbraith, J. Lippincott-Schwartz, J. Gillette, S. Manley, R. Sougrat, C. Waterman, P. Kanchanawong, M. Davidson, R. Fetter, and H. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106, 3125–3130 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (4)

P. V. Ganesan, and S. G. Boxer, “A membrane interferometer,” Proc. Natl. Acad. Sci. USA 106, 5627–5632 (2009).
[CrossRef] [PubMed]

J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. USA 106, 8107–8112 (2009).
[CrossRef] [PubMed]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[CrossRef] [PubMed]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (sted) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (1)

B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[CrossRef]

Prog. Colloid Polym. Sci. (1)

G. Decher, and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[CrossRef]

Science (4)

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320, 246–249 (2008).
[CrossRef] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super- resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[CrossRef] [PubMed]

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

Other (1)

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.) (Cambridge University Press, 1999).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for three-dimensional localization of single fluorescent nano-objects. (b) Detail illustration of a quantum dot on the custom-made slide comprising the dielectric mirror and spacer layer. (c) Reflection properties of the dielectric mirror.

Fig. 2.
Fig. 2.

(a) Measured diffraction pattern of a single quantum dot. (b) Fitted diffraction pattern for precise lateral localization based on the realistic image formation model.

Fig. 3.
Fig. 3.

(a) Experimental spectral self-interference signal of a single quantum dot (blue), and the corresponding fit by least-squares non-linear curve fitting (red). The inset represents the envelope of the spectrum retrieved by Fourier filtering of the oscillatory components. Differences between the fit and the measured data shown in the residuals are due to aberrations in the spectrometer and the present noise. (b) Fitted measurements (red and blue) of two quantum dots differing in their axial position by 20 nm.

Fig. 4.
Fig. 4.

(a) Average accuracy of the axial localization fitting process on ten modeled self-interference signals (SNR=20) over the axial range of several ten’s of micrometers. (b) Measured spectral self-interference signal (dashed black) with the corresponding fit (red) of a quantum dot on a thick polymer film yielding a thickness of 48.683 µm. Differences between the fit and the measured data shown in the residuals are due to aberrations in the spectrometer and the present noise. In particular, it is visible at the sides of the spectrum, where aberrations are stronger and the signal smaller.

Fig. 5.
Fig. 5.

(a) Three-dimensional nano-localization. Single quantum dot localization measurements before (dark) and after swelling (light) of the polymer bilayers. The 10-bilayer substrate thickness increases by about 35 nm. (b) Histogram of 50 axial localizations yielding a standard deviation of 4 nm (upper graph) and histogram of 100 lateral localization yielding a standard deviation of 8 nm (lower graph).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h φ , ψ , ω , κ , η ( x ; x p , τ ) = c T ( φ , ψ , ω , κ , η ) · m ( x ; x p , τ )
m 1 = I 0 2 + I 2 2
m 2 = sin ( 2 ψ d ) 𝔢 { I 0 * I 2 }
m 3 = cos ( 2 ψ d ) 𝔢 { I 0 * I 2 }
m 4 = sin ( ψ d ) 𝔍 𝔪 { I 1 * ( I 0 + I 2 ) }
m 5 = cos ( ψ d ) 𝔍 𝔪 { I 1 * ( I 0 + I 2 ) }
m 6 = I 1 2
I = E TE , TM ( θ , φ , ψ ) + E TE , TM ( π θ , φ , ψ ) R TE , TM ( n , D , λ , θ ) e i k 2 d cos θ 2 .

Metrics