Abstract

Near infrared (NIR; 660−1300 nm) long-persistent phosphorescence from Cr3+ ions with persistence time of more than 1 hour was realized in La3Ga5GeO14:Cr3+ phosphor (with or without co-dopants such as Li+, Zn2+, Ca2+, Mg2+ and Dy3+). The NIR phosphorescence can be effectively achieved under UV illumination (~240−360 nm) but is barely achieved by blue light (~480 nm) irradiation, even though the blue light excitation are effective to the NIR fluorescence. The NIR phosphorescence mechanisms were discussed by measuring the irradiation energy dependence of the phosphorescence intensity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
    [CrossRef]
  2. W. M. Yen, S. Shionoya, and H. Yamamoto, Practical Applications of Phosphors (CRC Press, Boca Raton, FL, 2006).
  3. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [CrossRef] [PubMed]
  4. N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
    [CrossRef]
  5. B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystal,” Appl. Phys. B 36(4), 195–201 (1985).
    [CrossRef]
  6. H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
    [CrossRef]
  7. P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
    [CrossRef]
  8. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).
  9. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).
  10. A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).
  11. G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
    [CrossRef]
  12. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
    [CrossRef]
  13. D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
    [CrossRef]
  14. C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
    [CrossRef]
  15. M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
    [CrossRef]
  16. M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
    [CrossRef]
  17. P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
    [CrossRef]
  18. L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
    [CrossRef]
  19. J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
    [CrossRef]

2010 (1)

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
[CrossRef]

2009 (3)

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

2008 (1)

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

2007 (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

1997 (1)

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

1996 (2)

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

1994 (2)

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

1993 (1)

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
[CrossRef]

1988 (2)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

1987 (2)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

1985 (1)

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystal,” Appl. Phys. B 36(4), 195–201 (1985).
[CrossRef]

1975 (1)

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
[CrossRef]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Blasse, G.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
[CrossRef]

Butashin, A. V.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

Casalboni, M.

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Demidovich, A. A.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

Donegan, J. F.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Fukui, M.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

Glynn, T. J.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Gourier, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Grabmaier, B. C.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
[CrossRef]

Grassano, U. M.

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

Grinberg, M.

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

Han, T. P. J.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

Henderson, B.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

Holliday, K.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

Holsa, J.

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

Hölsä, J.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

Huber, G.

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystal,” Appl. Phys. B 36(4), 195–201 (1985).
[CrossRef]

Imbusch, G. F.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Jia, D.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
[CrossRef]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Kaminskii, A. A.

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

Koptev, V. G.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

Kostyk, L.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

Kuklinski, B.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

Lastusaari, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Lewis, L. A.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
[CrossRef]

Li, X.

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

Liu, F.

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

Luchechko, A.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

Luci, A.

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

Macfarlane, P. I.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Malkamaki, M.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Mill, B. V.

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

Morgan, G. P.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Mylnikova, I. E.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
[CrossRef]

Niittykoski, J.

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

Novak, P.

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

Ostertag, M.

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
[CrossRef]

Pan, Z. W.

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Piegza, J. T.

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

Remeika, J. P.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Shkadarevich, A. P.

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

Struve, B.

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystal,” Appl. Phys. B 36(4), 195–201 (1985).
[CrossRef]

Szymczak, H.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
[CrossRef]

Takeuchi, H.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

Tsvetkova, O.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

Walsh, C. G.

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

Wang, X. J.

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
[CrossRef]

Wardzynska, M.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
[CrossRef]

Yamaga, M.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

Yosida, T.

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

Yu, N.

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

Zakharko, Ya.

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

Zych, E.

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

Appl. Phys. B (1)

B. Struve and G. Huber, “The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystal,” Appl. Phys. B 36(4), 195–201 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

N. Yu, F. Liu, X. Li, and Z. W. Pan, “Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer,” Appl. Phys. Lett. 95(23), 231110 (2009).
[CrossRef]

Chem. Mater. (1)

J. T. Piegza, J. Niittykoski, J. Holsa, and E. Zych, “Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+,Ca2+-codoped Lu2O3 materials,” Chem. Mater. 20(6), 2252–2261 (2008).
[CrossRef]

Electrochem. Solid St. (1)

D. Jia, L. A. Lewis, and X. J. Wang, “Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission,” Electrochem. Solid St. 13(4), J32 (2010).
[CrossRef]

Inorg. Mater. (3)

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, and A. A. Demidovich, “Wide-band tunable stimulated emission from a La3Ga5SiO14:Cr3+,” Inorg. Mater. 23, 618 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Wide-band tunable stimulated emission of Cr3+ ions in the trigonal crystal La3Ga5.5Nb0.5O14,” Inorg. Mater. 23, 1700 (1987).

A. A. Kaminskii, A. P. Shkadarevich, B. V. Mill, V. G. Koptev, A. V. Butashin, and A. A. Demidovich, “Tunable stimulated-emission of Cr3+ ions and generation frequency self-multiplication effect in acentric crystals of Ca-gallogermante structure,” Inorg. Mater. 24, 579 (1988).

J. Alloy. Comp. (1)

G. Blasse, B. C. Grabmaier, and M. Ostertag, “The afterglow mechanism of chromium-doped gadolinium gallium garnet,” J. Alloy. Comp. 200(1-2), 17–18 (1993).
[CrossRef]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670 (1996).
[CrossRef]

J. Lumin. (3)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamaki, and P. Novak, “Persistent luminescence - Quo vadis?” J. Lumin. 129(12), 1606–1609 (2009).
[CrossRef]

C. G. Walsh, J. F. Donegan, T. J. Glynn, G. P. Morgan, G. F. Imbusch, and J. P. Remeika, “luminescence from β–Ga2O3:Cr3+,” J. Lumin. 40–41, 103–104 (1988).
[CrossRef]

L. Kostyk, A. Luchechko, Ya. Zakharko, O. Tsvetkova, and B. Kuklinski, “Cr-related centers in Gd3Ga5O12 polycrystals,” J. Lumin. 129(3), 312–316 (2009).
[CrossRef]

J. Phys. C Solid State Phys. (1)

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys. 8(22), 3937–3943 (1975).
[CrossRef]

J. Phys. Condens. Matter (2)

M. Yamaga, P. I. Macfarlane, B. Henderson, K. Holliday, H. Takeuchi, T. Yosida, and M. Fukui, “Substitutional disorder and the ground state spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 9(2), 569–578 (1997).
[CrossRef]

P. I. Macfarlane, B. Henderson, K. Holliday, and M. Grinberg, “Substitutional disorder and the optical spectroscopy of gallogermanate crystals,” J. Phys. Condens. Matter 8(21), 3933–3946 (1996).
[CrossRef]

Opt. Mater. (1)

P. I. Macfarlane, T. P. J. Han, B. Henderson, and A. A. Kaminskii, “Cr3+ luminescence in calcium and strontium gallogermanate,” Opt. Mater. 3(1), 15–24 (1994).
[CrossRef]

Phys. Rev. B (1)

M. Casalboni, A. Luci, U. M. Grassano, B. V. Mill, and A. A. Kaminskii, “Optical spectroscopy of La3Ga5SiO14:Cr3+ crystals,” Phys. Rev. B 49(6), 3781–3790 (1994).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[CrossRef] [PubMed]

Other (1)

W. M. Yen, S. Shionoya, and H. Yamamoto, Practical Applications of Phosphors (CRC Press, Boca Raton, FL, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Normalized excitation and emission spectra of LGG:Cr,Zn phosphor at room temperature. (b) Mechanistic configurational coordinate diagram illustrating different emission channels. The solid and dashed arrows represent the emissions from the Cr3+ ions located in the intermediate and weak field sites, respectively.

Fig. 2
Fig. 2

Detected phosphorescence wavelength ranges and NIR phosphorescence images of LGG:Cr,Zn powders observed through (a−c) 665 nm, (d−f) 780 nm, and (g−i) 830 nm cut-off filters at time of 10 s and 100 s after the stoppage of a 254 nm UV lamp irradiation in a dark room. The images were taken by a digital camera through a night vision monocular.

Fig. 3
Fig. 3

(a) Phosphorescence decay curve of LGG:Cr,Zn phosphor monitored at 740 nm after 10 min of 260 nm irradiation. The point of I10s represents the phosphorescence intensity recorded at time of 10 s after the stoppage of the irradiation. (b) Phosphorescence intensity monitored at 740 nm emission as a function of irradiation energy (represented by balls) in LGG:Cr,Zn phosphor. The dashed line curve is the fluorescence excitation spectrum monitored at 740 nm.

Metrics