Abstract

In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  3. M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
    [CrossRef] [PubMed]
  4. R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008).
    [CrossRef] [PubMed]
  5. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
    [CrossRef] [PubMed]
  6. C. Contag, and M. H. Bachmann, "Advances in Bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
    [CrossRef] [PubMed]
  7. W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006).
    [CrossRef] [PubMed]
  8. C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, Y. Lv, and M. Xu, "Galerkin-based meshless methods for photon transport in the biological tissue," Opt. Express 16, 20317-20333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20317.
    [CrossRef] [PubMed]
  9. B. Zhang, J. Tian, D. Liu, L. Sun, X. Yang, and D. Han, "A multithread based new sparse matrix method in bioluminescence tomography," presented at Conference 7626 of SPIE on Medical Imaging, San Diego, USA, 13-18 February 2010.
  10. Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009).
    [CrossRef]
  11. http://developer.nvidia.com/page/home.html
  12. http://www.culatools.com/
  13. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3996.
    [CrossRef] [PubMed]
  14. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  15. J. J. Duderstadt, and L. J. Hamilton, Nuclear Reactor analysis, (Wiley, New York, 1976).
  16. S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).
  17. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211.
    [CrossRef] [PubMed]
  18. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
    [CrossRef]
  19. B. Zhang, X. Yang, C. Qin, D. Liu, S. Zhu, J. Feng, L. Sun, K. Liu, D. Han, X. Ma, X. Zhang, J. Zhong, X. Li, X. Yang, and J. Tian, "A trust region method in adaptive finite element framework for bioluminescence tomography," Opt. Express 18, 6477-6491 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-7-6477.
    [CrossRef] [PubMed]
  20. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  21. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef]
  22. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-169 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-10-3-159.
    [PubMed]
  23. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009).
[CrossRef]

2008 (3)

R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008).
[CrossRef] [PubMed]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

C. Qin, J. Tian, X. Yang, K. Liu, G. Yan, J. Feng, Y. Lv, and M. Xu, "Galerkin-based meshless methods for photon transport in the biological tissue," Opt. Express 16, 20317-20333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20317.
[CrossRef] [PubMed]

2006 (3)

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211.
[CrossRef] [PubMed]

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

2005 (2)

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

2004 (3)

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3996.
[CrossRef] [PubMed]

2003 (1)

R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

2002 (2)

1995 (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Bachmann, M. H.

C. Contag, and M. H. Bachmann, "Advances in Bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Boas, D.

Chatziioannou, A. F.

Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Cong, A.

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Cong, W.

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211.
[CrossRef] [PubMed]

W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Contag, C.

C. Contag, and M. H. Bachmann, "Advances in Bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Culver, J.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Dinkelborg, L. M.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

Dunn, A.

Feng, J.

Gambhir, S. S.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Gu, X.

Han, D.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Hoffman, E. A.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Jiang, H.

Kumar, D.

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Larcom, L.

Li, H.

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211.
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Li, X.

Liu, D.

Liu, K.

Liu, Y.

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Loening, A. M.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009).
[CrossRef]

Luo, J.

Lv, Y.

Ma, X.

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Pittet, M. J.

R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008).
[CrossRef] [PubMed]

Qin, C.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Rao, J. H.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

So, M. K.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Stott, J.

Sun, L.

Tian, J.

van Bruggen, N.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

Wang, G.

W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, "A multilevel adaptive finite element algorithm for bioluminescence tomography," Opt. Express 14, 8211-8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211.
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Wang, L. H. V.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Wang, L. V.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Willmann, J. K.

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

Xu, C. J.

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Xu, M.

Yan, G.

Yang, W.

Yang, X.

Zhang, B.

Zhang, Q.

Zhang, X.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Zhong, J.

Zhu, F.

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Zhu, S.

Acad. Radiol. (1)

H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo Method," Acad. Radiol. 11, 1029-1038 (2004).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

C. Contag, and M. H. Bachmann, "Advances in Bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Commun. Numer. Methods Eng. (1)

Y. Lu, and A. F. Chatziioannou, "A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model," Commun. Numer. Methods Eng. 25, 751-770 (2009).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

J. Biomed. Opt. (1)

W. Cong, and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

Med. Phys. (1)

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

M. K. So, C. J. Xu, A. M. Loening, S. S. Gambhir, and J. H. Rao, "Self-illuminating quantum dot conjugates for in vivo imaging," Nat. Biotechnol. 24, 339-343 (2006).
[CrossRef] [PubMed]

Nat. Med. (1)

R. Weissleder, and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov. (1)

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7, 591-607 (2008).
[CrossRef] [PubMed]

Nature (1)

R. Weissleder, and M. J. Pittet, "Imaging in the era of molecular oncology," Nature 452, 580-589 (2008).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Med. Biol. (1)

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Other (5)

J. J. Duderstadt, and L. J. Hamilton, Nuclear Reactor analysis, (Wiley, New York, 1976).

S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).

http://developer.nvidia.com/page/home.html

http://www.culatools.com/

B. Zhang, J. Tian, D. Liu, L. Sun, X. Yang, and D. Han, "A multithread based new sparse matrix method in bioluminescence tomography," presented at Conference 7626 of SPIE on Medical Imaging, San Diego, USA, 13-18 February 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The hardware model of GPU [11].

Fig. 2.
Fig. 2.

The execution flow chart of matrix inversion and multiplication using GPU.

Fig. 3.
Fig. 3.

Sub figure (a) is the heterogeneous cylindrical numerical phantom with single source, consisted of muscle (white), bone (black), heart (pink), lungs (green), liver (yellow) and a ball source (blue) in the right lung. Sub figure (b) is the surface light power distribution of the phantom in sub figure (a), which is generated by MOSE.

Fig. 4.
Fig. 4.

The �� in each case in Ex. 1. The horizontal axis in the figure was the case order and the vertical axis was ��.

Fig. 5.
Fig. 5.

GPU speed up to CPU. Sub figures (a) to (d) were SU Cpu8GpuInv , SU Cpu8GpuMul , UC puGpuInv and SU CpuGpuMul for each case of Ex. 2, respectively. The horizontal axis in all the sub figures was the case order. The vertical axis of sub figures (a) to (d) were SU Cpu8GpuInv , SU Cpu8GpuMul , UC puGpuInv and SU CpuGpuMul , respectively.

Fig. 6.
Fig. 6.

Reconstruction results of single source numerical experiment. Sub figures (a) to (d) were the 3D views, front views, side views and top views, respectively. The blue ball in each sub figure denoted the real source and the red tetrahedron denoted the reconstructed source with the maximum density. For concision, only the real source and the reconstructed source were displayed.

Tables (4)

Tables Icon

Table 1. Optical parameters of different tissues of the heterogeneous cylindrical phantom

Tables Icon

Table 2. Statistics of main time consuming modules in the AFE framework

Tables Icon

Table 3. Comparisons between multi-thread CPU acceleration and GPU acceleration on matrix inversion and multiplication

Tables Icon

Table 4. Time cost of GPU acceleration on matrix inversion and multiplication for single source reconstruction experiment in every mesh refinement procedure of the AFE framework

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

· ( D ( x ) Φ ( x ) ) + μ a ( x ) Φ ( x ) = S ( x ) ( x Ω )
Φ ( x ) + 2 A ( x ; n , n ) D ( x ) ( v ( x ) · Φ ( x ) ) = 0 ( x Ω )
Ω ( D ( x ) ( Φ ( x ) ) · ( Ψ ( x ) ) + μ a ( x ) Φ ( x ) Ψ ( x ) ) d x +
Ω 1 2 A ( x ; n , n ) Φ ( x ) Ψ ( x ) d x = Ω S ( x ) Ψ ( x ) d x ( Ψ ( x ) H 1 ( Ω ) )
( [ K l ] + [ C l ] + [ B l ] ) Φ l = M l Φ l = F l S l
Φ l = M l 1 F l S l = A l S l
Φ l meas = A l ps S l P
f l ( S l P ) = ∣∣ A l ps S l P Φ l meas ∣∣ 2 2

Metrics