Abstract

Two optical fiber devices have been coated in parallel: a long period fiber grating (LPFG) and a cladding-removed multimode optical fiber (CRMOF). The progressive coating of the LPFG by means of the layer-by-layer electrostatic-self-assembly, permits to observe a resonance wavelength shift of the attenuation bands in the transmission spectrum. The cause of this wavelength shift is the reorganization of the cladding mode effective indices. The cause of this modal reorganization can be understood with the results observed in the CRMOF coated in parallel. A lossy-mode-resonance (LMR) is generated in the same wavelength range of the LPFG attenuation bands analyzed. Moreover, the thickness range where the wavelength shift of the LPFG attenuation bands occurs coincides exactly with the thickness range where the LMR can be visualized in the transmission spectrum. These phenomena are analyzed theoretically and corroborated experimentally. The advantages and disadvantages of both optical fiber devices are explained.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [CrossRef]
  2. I. Del Villar, I. R. Matias, and F. J. Arregui, Handbook of interferometers: research, technology and applications, (New York, 2009).
  3. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [CrossRef]
  4. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [CrossRef] [PubMed]
  5. I. Del Villar, I. R. Matías, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
    [CrossRef]
  6. Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005).
    [CrossRef] [PubMed]
  7. I. Del Villar, I. R. Matías, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
    [CrossRef]
  8. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [CrossRef] [PubMed]
  9. J. M. Corres, I. del Villar, I. R. Matías, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett. 32(1), 29–31 (2007).
    [CrossRef]
  10. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
    [CrossRef]
  11. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
    [CrossRef]
  12. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008).
    [CrossRef] [PubMed]
  13. R. P. Murphy, S. W. James, and R. P. Tatam, “Multiplexing of Fiber-Optic Long-Period Grating-Based Interferometric Sensor,” J. Lightwave Technol. 25(3), 825–829 (2007).
    [CrossRef]
  14. I. Del Villar, C. M. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with Indium Tin Oxide coated optical fibers for sensing application,” J. Lightwave Technol. 28(1), 111–117 (2010).
    [CrossRef]
  15. M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).
  16. D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
    [CrossRef] [PubMed]
  17. F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
    [CrossRef]
  18. T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982).
    [CrossRef]
  19. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [CrossRef]
  20. J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
    [CrossRef]
  21. A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005).
    [CrossRef]
  22. Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
    [CrossRef]
  23. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [CrossRef]
  24. G. P. Agrawal, Nonlinear fiber optics, p. 8., (3rd ed., Academic Press: New York, 2001).
  25. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
    [CrossRef]

2010 (1)

2008 (2)

P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008).
[CrossRef] [PubMed]

J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
[CrossRef]

2007 (2)

2006 (4)

I. Del Villar, I. R. Matías, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[CrossRef]

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

2005 (6)

I. Del Villar, I. R. Matías, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
[CrossRef]

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[CrossRef] [PubMed]

Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005).
[CrossRef]

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
[CrossRef] [PubMed]

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

2002 (1)

2000 (1)

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

1997 (2)

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

1993 (2)

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

1982 (1)

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982).
[CrossRef]

Achaerandio, M.

Adam, D. R.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
[CrossRef] [PubMed]

Arregui, F. J.

Ashwell, G. J.

Batchman, T. E.

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982).
[CrossRef]

Bock, W. J.

Campopiano, S.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

Chen, B. J.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Chen, T. P.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Contessa, L.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

Cooper, K. L.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Corres, J. M.

Cusano, A.

Cutolo, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

Del Villar, I.

Einziger, P. D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
[CrossRef] [PubMed]

Foglia Manzillo, P.

Fothergill, J.

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

Giordano, M.

Goicoechea, J.

J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
[CrossRef]

Grzegorzewski, J.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).

Guerra, G.

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

Gupta, B. D.

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005).
[CrossRef]

Hanning, C.

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

Heflin, J. R.

Hernaez, M.

Iadicicco, A.

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
[CrossRef] [PubMed]

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

James, S. W.

Jones, N. B.

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Kim, D. W.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Korwin-Pawlowski, M. L.

Lalanne, P.

Marciniak, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).

Matias, I. R.

I. Del Villar, C. M. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with Indium Tin Oxide coated optical fibers for sensing application,” J. Lightwave Technol. 28(1), 111–117 (2010).
[CrossRef]

J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
[CrossRef]

Matías, I. R.

McWright, G. M.

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982).
[CrossRef]

Murphy, R. P.

Pilla, P.

Ramachandran, S.

Razansky, D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
[CrossRef] [PubMed]

Rees, N. D.

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005).
[CrossRef]

Stolen, R. H.

Sun, C. Q.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Sun, X. W.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Sun, Z.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Szustakowski, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).

Tatam, R. P.

Tay, B. K.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Wang, A.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Wang, Z. Y.

Xu, C. X.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Xu, Y.

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

Yang, Y.

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Zamarreño, C. M.

Zamarreño, C. R.

J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
[CrossRef]

Zhang, Y.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

Electron. Lett. (1)

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[CrossRef]

IEE Proceedings J. (1)

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEE Proceedings J. 140, 247–251 (1993).

IEEE J. Quantum Electron. (1)

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18(4), 782–788 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (2)

Y. Xu, N. B. Jones, J. Fothergill, and C. Hanning, “Analytical estimates of the characteristics of surface Plasmon resonance fibre-optic sensors,” J. Mod. Opt. 47(6), 1099–1110 (2000).
[CrossRef]

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[CrossRef]

Opt. Commun. (1)

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245(1-6), 159–169 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95(1), 018101 (2005).
[CrossRef] [PubMed]

Science (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[CrossRef]

Sens. Actuators B Chem. (2)

J. Goicoechea, C. R. Zamarreño, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red,” Sens. Actuators B Chem. 132(1), 305–311 (2008).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface Plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Thin Solid Films (1)

Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films 510(1-2), 95–101 (2006).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear fiber optics, p. 8., (3rd ed., Academic Press: New York, 2001).

I. Del Villar, I. R. Matias, and F. J. Arregui, Handbook of interferometers: research, technology and applications, (New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical transmission setup: (a) long period fiber grating; (b) cladding removed multimode optical fiber.

Fig. 2
Fig. 2

Response of resonances in an LPFG as a function of coating thickness. The gray scale represents the transmission, with white corresponding to 100% (0dB). Resonances experiment an abrupt wavelength shift between 20 and 40 bilayers (see dotted lines).

Fig. 3
Fig. 3

Response of lossy mode resonances (LMR) in a cladding removed multimode fiber as a function of coating thickness. The gray scale represents the transmission, with white corresponding to 100% (0 dB). The LMR is visible in the spectrum between 20 and 40 bilayers and it is delimited with dotted lines for the sake of comparison with the results of Fig. 2.

Fig. 4
Fig. 4

Modal analysis: (a) Coupling wavelengths as a function of coating thickness for a coated LPFG. (b) cutoff wavelengths for modes in a coated CRMOF.

Fig. 5
Fig. 5

Transmission spectra for: (a) coated LPFGs (b) coated CRMOFs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β 01 ( λ ) + s 0 ζ 01 , 01 ( λ ) ( β 0 j ( λ ) + s 0 ζ 0 j , 0 j ( λ ) ) = 2 π N Λ
T ( λ ) = θ c 90 º p ( θ ) R N ( θ ) ( θ , λ ) d θ θ c 90 º p ( θ )
p ( θ ) exp [ ( θ π 2 ) 2 2 W 2 ]
R N ( θ ) ( θ , λ ) = R T M N ( θ ) ( θ , λ ) + R T E N ( θ ) ( θ , λ ) 2
ε ( E ) = ε ( ) + n A n E n 2 E 2 i Γ n E

Metrics