Abstract

In this paper we investigate the effect of microstructure irregularities and applied strain on backward Brillouin scattering by comparing two photonic crystal fibers drawn with different parameters in order to minimize diameter and microstructure fluctuations. We fully characterize their Brillouin properties including the gain spectrum and the critical power. Using Brillouin echoes distributed sensing with a high spatial resolution of 30 cm we are able to map the Brillouin frequency shift along the fiber and get an accurate estimation of the microstructure longitudinal fluctuations. Our results reveal a clear-cut difference of longitudinal homogeneity between the two fibers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21(11), 539-541 (1972).
    [CrossRef]
  2. M. Niklès, L. Thévenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21(10), 758-760 (1996).
    [CrossRef] [PubMed]
  3. L. Thévenaz, "Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives," Front. Optoelectron. China 3(1), 13-21 (2010).
    [CrossRef]
  4. L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
    [CrossRef]
  5. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
    [CrossRef]
  6. A. Minardo, R. Bernini, W. Urbanczyk, J. Wojcik, N. Gorbatov, M. Tur, and L. Zeni, "Stimulated Brillouin scattering in highly birefringent microstructure fiber: experimental analysis," Opt. Lett. 33, 2329-2331 (2008).
    [CrossRef] [PubMed]
  7. J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, "Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber," Opt. Express 15(23), 15517-15522 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-23-15517.
    [CrossRef] [PubMed]
  8. M. Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength," J. Opt. Soc. Am. B 15(8), 2269-2275 (1998).
    [CrossRef]
  9. M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave Technol. 15(10), 1842-1851 (1997).
    [CrossRef]
  10. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11(11), 2489 (1972).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, 2001).
  12. M. O. V. Deventer, and A. J. Boot, "Polarisation properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12(4), 585-590 (1994).
    [CrossRef]
  13. R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
    [CrossRef] [PubMed]
  14. S. L. Floch, and P. Cambon, "Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers," J. Opt. Soc. Am. A 20(6), 1132-1137 (2003).
    [CrossRef]
  15. S. F. Mafang, J.-C. Beugnot, and L. Thévenaz, "Optimized configuration for high resolution distributed sensing using Brillouin echoes," Proc. SPIE, UK, Edinburgh 75032C, 7503 (2009).
  16. F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, and D. J. Richardson, "Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion," J. Opt. Soc. Am. B 24(9), 2185-2194 (2007).
    [CrossRef]
  17. Crystal Fibres, http://www.nktphotonics.com/.
  18. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
    [CrossRef]

2010 (1)

L. Thévenaz, "Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives," Front. Optoelectron. China 3(1), 13-21 (2010).
[CrossRef]

2008 (2)

A. Minardo, R. Bernini, W. Urbanczyk, J. Wojcik, N. Gorbatov, M. Tur, and L. Zeni, "Stimulated Brillouin scattering in highly birefringent microstructure fiber: experimental analysis," Opt. Lett. 33, 2329-2331 (2008).
[CrossRef] [PubMed]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

2007 (2)

2006 (1)

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

2005 (1)

L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
[CrossRef]

2003 (1)

1998 (1)

1997 (1)

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave Technol. 15(10), 1842-1851 (1997).
[CrossRef]

1996 (1)

1994 (1)

M. O. V. Deventer, and A. J. Boot, "Polarisation properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12(4), 585-590 (1994).
[CrossRef]

1990 (1)

R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
[CrossRef] [PubMed]

1972 (2)

Alasia, D.

Bao, X.

L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
[CrossRef]

Bernini, R.

Beugnot, J.-C.

Boot, A. J.

M. O. V. Deventer, and A. J. Boot, "Polarisation properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12(4), 585-590 (1994).
[CrossRef]

Boyd, R.

R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
[CrossRef] [PubMed]

Broderick, N. G. R.

Cambon, P.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Chen, L.

L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
[CrossRef]

Dainese, P.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Deventer, M. O. V.

M. O. V. Deventer, and A. J. Boot, "Polarisation properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12(4), 585-590 (1994).
[CrossRef]

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Floch, S. L.

Fragnito, H. L.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Furusawa, K.

Gorbatov, N.

Ippen, E. P.

E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21(11), 539-541 (1972).
[CrossRef]

Joly, N.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Karlsson, M.

Khelif, A.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Knight, J. C.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Laude, V.

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, "Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber," Opt. Express 15(23), 15517-15522 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-23-15517.
[CrossRef] [PubMed]

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Mafang, S. F.

Maillotte, H.

Minardo, A.

Monteville, A.

Narum, P.

R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
[CrossRef] [PubMed]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave Technol. 15(10), 1842-1851 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21(10), 758-760 (1996).
[CrossRef] [PubMed]

Poletti, F.

Provino, L.

Richardson, D. J.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave Technol. 15(10), 1842-1851 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21(10), 758-760 (1996).
[CrossRef] [PubMed]

Russell, P. S. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Rzazewski, K.

R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
[CrossRef] [PubMed]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Smith, R. G.

Stolen, R. H.

E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21(11), 539-541 (1972).
[CrossRef]

Sylvestre, T.

Thévenaz, L.

Traynor, N.

Tur, M.

Urbanczyk, W.

Wiederhecker, G. S.

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Wojcik, J.

Yusoff, Z.

Zeni, L.

Zou, L.

L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21(11), 539-541 (1972).
[CrossRef]

Front. Optoelectron. China (1)

L. Thévenaz, "Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives," Front. Optoelectron. China 3(1), 13-21 (2010).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, "Quantitative broadband chemical sensing in air-suspended solid-core fibers," J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

J. Lightwave Technol. (2)

M. Niklès, L. Thévenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave Technol. 15(10), 1842-1851 (1997).
[CrossRef]

M. O. V. Deventer, and A. J. Boot, "Polarisation properties of stimulated Brillouin scattering in single mode fibers," J. Lightwave Technol. 12(4), 585-590 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, "Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres," Nat. Phys. 2(6), 388-392 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

R. Boyd, K. Rzazewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42(9), 5514-5521 (1990).
[CrossRef] [PubMed]

Smart Mater. Struct. (1)

L. Zou, X. Bao, and L. Chen, "Distributed Brillouin temperature sensing in photonic crystal fiber," Smart Mater. Struct. 14(3), S8 (2005).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, 2001).

Crystal Fibres, http://www.nktphotonics.com/.

S. F. Mafang, J.-C. Beugnot, and L. Thévenaz, "Optimized configuration for high resolution distributed sensing using Brillouin echoes," Proc. SPIE, UK, Edinburgh 75032C, 7503 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Brillouin gain spectrum for fiber #2 with increasing input power. Brillouin spectrum for an input pump power of 11 dBm, which is under the critical power, for (b) fiber #1 and (c) fiber #2. The PCF cross-sections are shown in the insets.

Fig. 2.
Fig. 2.

Backscattered and transmitted power versus input power of (a) fiber #1 and (b) fiber #2

Fig. 3.
Fig. 3.

(a) Experimental setup of the BEDS system. ECL: external cavity laser; EDFA: erbium-doped fiber amplifier; PD: photodiode. (b) Color plot of Brillouin frequency shift along fiber #1. The spatial resolution is 30 cm and the frequency resolution is 2 MHz.

Fig. 4.
Fig. 4.

Mapping of the Brillouin frequency shift along (a) fiber #1 and (b) fiber #2 showing the effect of inhomogeneities and strain. The insets show the Fourier transforms.

Fig. 5.
Fig. 5.

Variation of the effective refractive index while tuning the scale of the SEM-image

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v B = 2 n eff V L λ P
P cr = C · K · A eff g B · L eff

Metrics