Abstract

This study utilized a developed surface plasmon polariton (SPP) phase microscopy to observe cell-biosubstrate contacts. The developed SPP phase microscopy is highly sensitive to cell membrane contact with biosubstrates and also provides long-term phase stability to achieve time-lapse living cell observation. As such, an SPP intensity and phase sensitivity comparison demonstrates that the sensitivity of the phase measurement can be 100-fold greater than that of the intensity measurement. Also, a more than 2-hour cell apoptosis observation via the SPP phase microscopy is presented. To implement the incident angle from 70° to 78°, cell-biosubstrate contact images corresponding to the surface plasmon resonance (SPR) angles are obtained by utilizing the SPP phase measurement. According to the information of the corresponding SPR angle image and a multilayer simulation, the contact distances between a living melanoma cell and a bovine serum albumin substrate at four different locations have been estimated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Boudreau and P. L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come,” Biochem. J. 339(3), 481–488 (1999).
    [CrossRef] [PubMed]
  2. D. W. DeSimone, “Adhesion and matrix in vertebrate development,” Curr. Opin. Cell Biol. 6(5), 747–751 (1994).
    [CrossRef] [PubMed]
  3. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
    [CrossRef] [PubMed]
  4. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [CrossRef] [PubMed]
  5. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
    [PubMed]
  6. W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
    [CrossRef] [PubMed]
  7. S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
    [CrossRef] [PubMed]
  8. W. M. Reichert and G. A. Truskey, “Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence,” J. Cell Sci. 96(Pt 2), 219–230 (1990).
    [PubMed]
  9. J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
    [CrossRef] [PubMed]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).
  11. A. V. Kabashin, and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
    [CrossRef]
  12. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  13. K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [CrossRef] [PubMed]
  14. E. M. Yeatman, and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23(20), 1091–1092 (1987).
    [CrossRef]
  15. B. Rothenhausler, and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).
  16. T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
    [CrossRef]
  17. A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
    [CrossRef] [PubMed]
  18. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [CrossRef] [PubMed]
  19. M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
    [CrossRef] [PubMed]
  20. S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
    [CrossRef] [PubMed]
  21. A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
    [CrossRef]
  22. H. P. Ho, and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
    [CrossRef]
  23. Y. D. Su, S.-J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
    [CrossRef] [PubMed]
  24. R.-Y. He, C.-Y. Lin, Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Imaging live cell membranes via surface plasmon-enhanced fluorescence and phase microscopy,” Opt. Express 18(4), 3649–3659 (2010).
    [CrossRef] [PubMed]
  25. X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
    [CrossRef]
  26. J.-N. Yih, F.-C. Chien, C.-Y. Lin, H.-F. Yau, and S.-J. Chen, “Angular-interrogation attenuated total reflection metrology system for plasmonic sensors,” Appl. Opt. 44(29), 6155–6162 (2005).
    [CrossRef] [PubMed]
  27. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [CrossRef] [PubMed]
  28. J.-J. Chyou, S.-J. Chen, and Y.-K. Chen, “Two-dimensional phase unwrapping with a multichannel least-mean-square algorithm,” Appl. Opt. 43(30), 5655–5661 (2004).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

2008 (1)

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

2007 (1)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

J.-J. Chyou, S.-J. Chen, and Y.-K. Chen, “Two-dimensional phase unwrapping with a multichannel least-mean-square algorithm,” Appl. Opt. 43(30), 5655–5661 (2004).
[CrossRef] [PubMed]

2003 (1)

H. P. Ho, and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[CrossRef]

2001 (2)

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

N. J. Boudreau and P. L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come,” Biochem. J. 339(3), 481–488 (1999).
[CrossRef] [PubMed]

1998 (1)

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

1996 (1)

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

1994 (1)

D. W. DeSimone, “Adhesion and matrix in vertebrate development,” Curr. Opin. Cell Biol. 6(5), 747–751 (1994).
[CrossRef] [PubMed]

1992 (1)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

1990 (1)

W. M. Reichert and G. A. Truskey, “Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence,” J. Cell Sci. 96(Pt 2), 219–230 (1990).
[PubMed]

1988 (1)

B. Rothenhausler, and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).

1987 (2)

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

Ash, E. A.

E. M. Yeatman, and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23(20), 1091–1092 (1987).
[CrossRef]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

Bastmeyer, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Bechinger, C.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Beloglazov, A. A.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Betz, W. J.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Bhadriraju, K.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Boudreau, N. J.

N. J. Boudreau and P. L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come,” Biochem. J. 339(3), 481–488 (1999).
[CrossRef] [PubMed]

Britland, S. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Burmeister, J. S.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Chang, N.-S.

Chen, S.-J.

Chen, Y. K.

S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
[CrossRef] [PubMed]

Chen, Y.-K.

Chien, F.-C.

Chiu, K.-C.

Chyou, J.-J.

Curtis, A. S. G.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

Denyer, M. C. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

DeSimone, D. W.

D. W. DeSimone, “Adhesion and matrix in vertebrate development,” Curr. Opin. Cell Biol. 6(5), 747–751 (1994).
[CrossRef] [PubMed]

Eiju, T.

Fang, N.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Giebel, K.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Goulian, M.

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

Grapa, E.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Halter, M.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Hariharan, P.

He, R.-Y.

Herminghaus, S.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Hesselink, L.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Ho, H. P.

H. P. Ho, and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hsiu, F. M.

S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
[CrossRef] [PubMed]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Jamil, M. M. A.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Jones, P. L.

N. J. Boudreau and P. L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come,” Biochem. J. 339(3), 481–488 (1999).
[CrossRef] [PubMed]

Kabashin, A. V.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Knoll, W.

B. Rothenhausler, and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).

Kochergin, V. E.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Lam, W. W.

H. P. Ho, and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[CrossRef]

Leiderer, P.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Lin, C.-Y.

Liu, S.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Liu, Z.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Mao, F.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Morgan, H.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

Oreb, B. F.

Peterson, A. W.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Plant, A. L.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Reichert, W. M.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

W. M. Reichert and G. A. Truskey, “Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence,” J. Cell Sci. 96(Pt 2), 219–230 (1990).
[PubMed]

Riedel, M.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Riehle, M.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

Rothenhausler, B.

B. Rothenhausler, and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).

Schmoranzer, J.

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

See, C. W.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Simon, S. M.

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

Smith, C. B.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Somekh, M. G.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Su, Y. D.

S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
[CrossRef] [PubMed]

Y. D. Su, S.-J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
[CrossRef] [PubMed]

Su, Y.-D.

Sund, S. E.

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

Tona, A.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Truskey, G. A.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

W. M. Reichert and G. A. Truskey, “Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence,” J. Cell Sci. 96(Pt 2), 219–230 (1990).
[PubMed]

Tsou, C. Y.

S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
[CrossRef] [PubMed]

Weiland, U.

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Wu, H.-L.

Yau, H.-F.

Yeatman, E. M.

E. M. Yeatman, and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23(20), 1091–1092 (1987).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yeh, T. L.

Yih, J.-N.

Yin, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Youseffi, M.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Zhang, J.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Zhang, T.

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

Zhang, X.

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Yin, L. Hesselink, Z. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[CrossRef]

Biochem. J. (1)

N. J. Boudreau and P. L. Jones, “Extracellular matrix and integrin signalling: the shape of things to come,” Biochem. J. 339(3), 481–488 (1999).
[CrossRef] [PubMed]

Biophys. J. (2)

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

K. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

A. V. Kabashin, V. E. Kochergin, A. A. Beloglazov, and P. I. Nikitin, “Phase-polarisation contrast for surface plasmon resonance biosensors,” Biosens. Bioelectron. 13(12), 1263–1269 (1998).
[CrossRef]

BMC Cell Biol. (1)

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Curr. Opin. Cell Biol. (1)

D. W. DeSimone, “Adhesion and matrix in vertebrate development,” Curr. Opin. Cell Biol. 6(5), 747–751 (1994).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Electron. Lett. (1)

E. M. Yeatman, and E. A. Ash, “Surface plasmon microscopy,” Electron. Lett. 23(20), 1091–1092 (1987).
[CrossRef]

J. Biomed. Opt. (1)

S.-J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10(3), 034005 (2005).
[CrossRef] [PubMed]

J. Cell Biol. (2)

J. Schmoranzer, M. Goulian, D. Axelrod, and S. M. Simon, “Imaging constitutive exocytosis with total internal reflection fluorescence microscopy,” J. Cell Biol. 149(1), 23–32 (2000).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89(1), 141–145 (1981).
[CrossRef] [PubMed]

J. Cell Sci. (2)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

W. M. Reichert and G. A. Truskey, “Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence,” J. Cell Sci. 96(Pt 2), 219–230 (1990).
[PubMed]

J. Opt. A, Pure Appl. Opt. (1)

T. Zhang, H. Morgan, A. S. G. Curtis, and M. Riehle, “Measuring particle-substrate distance with surface plasmon resonance microscopy,” J. Opt. A, Pure Appl. Opt. 3(5), 333–337 (2001).
[CrossRef]

J. Struct. Biol. (1)

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Nature (1)

B. Rothenhausler, and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators B Chem. (2)

H. P. Ho, and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sens. Actuators B Chem. 96(3), 554–559 (2003).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Traffic (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).

A. V. Kabashin, and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–8 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The optical configuration of an objective-based common-path SPP phase microscope. (b) The magnified image of the objective coupling. The light is focused on the BFP of the objective to form a parallel light. The incident angle θ can be changed by adjusting the focal point on different distances from the optical axis of the objective.

Fig. 2.
Fig. 2.

A PMMA square-hole pattern on a 45 nm Au film is used to verify spatial resolution: (a) SEM image, (b) objective-based SPP intensity image, and (c) SPP phase image.

Fig. 3.
Fig. 3.

Images of the B16F10 cell apoptosis with time-lapse observation. (a) Left picture is the bright-field epi-illuminated image at the 50th minute after the cell seeded on the biosubstrate, while the right picture is the epi-illuminated image at the 120th min after the seeding. (b) Five-step interference images by adjusting the s-wave phase delay from 0 to 2π with an initial phase delay θ 0. (c) SPP phase images are real time measured from the 50th to 120th minute with a 20 min time interval.

Fig. 4.
Fig. 4.

SPP intensity images with different incident angles: (a) Epi-image; (b) The SPP intensity images at the incident angles of 70.75°, 71.45°, 72.19°, 72.96°, 73.75°, 74.59°, 75.48°, and 76.42° from left to right and top to bottom; (c) SPP reflectivity intensity curves of three different locations A, B, and C, and their corresponding SPR angles at around 73.75°, 75.48°, and 74.59°, respectively.

Fig. 5.
Fig. 5.

SPP phase images with different incident angles: (a) The SPP intensity images at the incident angles of 70.75°, 71.45°, 72.19°, 72.96°, 73.75°, 74.59°, 75.48°, and 76.42° from left to right and top to bottom; (b) SPP reflectivity intensity curves of three different locations A, B, and C and their corresponding SPR angles of around 73.75°, 75.48°, and 74.59°, respectively.

Fig. 6.
Fig. 6.

(a) 3D image and (b) 2D image of the corresponding SPR angles at different locations based on the SPP phase measurement. The color scales indicate the SPR angle in degrees.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x l = k 0 ε 0 sin θ = k sp k 0 ε 1 ε 2 ε 1 + ε 2 ,
d = f sin θ ,
φ ( x , y ) = tan 1 [ 2 ( I 2 I 4 ) 2 I 3 I 5 I 1 ] .

Metrics