Abstract

Random electromagnetic fields resulting from light-matter interaction have strong intensity fluctuations and are characterized by various statistical parameters. The local polarization of these fields can also vary randomly leading to different degrees of global depolarization. Here we demonstrate that the spatial variability of the vectorial properties contains information about the origins of randomly scattered fields. In particular, we show that the complex degree of mutual polarization provides the high-order polarization correlations necessary to identify the sources of different random fields. Scattered fields with similar global properties but different origins can be efficiently discriminated from one single realization of the light-matter interaction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics, 1st ed. (Roberts & Co., Englewood, 2007).
  2. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263-267 (2003).
    [CrossRef]
  3. J. Ellis, and A. Dogariu, "Optical Polarimetry of Random Fields," Phys. Rev. Lett. 95, 203905 (2005).
    [CrossRef] [PubMed]
  4. I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
    [CrossRef]
  5. S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
    [CrossRef] [PubMed]
  6. I. Freund, "‘1001’ correlations in random wave fields," Waves Random Media 8, 119-158 (1998).
    [CrossRef]
  7. A. A. Chabanov, B. Hu, and A. Z. Genack, "Dynamic Correlation in Wave Propagation in Random Media," Phys. Rev. Lett. 93, 123901 (2004).
    [CrossRef] [PubMed]
  8. S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
    [CrossRef] [PubMed]
  9. O. Gilbert, C. Deumi, and C. Amra, "Angle-resolved ellipsometry of scattering patterns from arbitrary surfaces and bulks," Opt. Express 13, 2403-2418 (2005).
    [CrossRef] [PubMed]
  10. J. Sorrentini, M. Zerrad, and C. Amra, "Statistical signatures of random media and their correlation to polarization properties," Opt. Lett. 34, 2429-2431 (2009).
    [CrossRef] [PubMed]
  11. C. Amra, M. Zerrad, L. Siozade, G. Georges, and C. Deumi, "Partial polarization of light induced by random defects at surfaces or bulks," Opt. Express 16, 10372-10383 (2008).
    [CrossRef] [PubMed]
  12. M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, "Gradual loss of polarization in light scattered from rough surfaces: Electromagnetic prediction," Opt. Express 18, 15832-15843 (2010).
    [CrossRef] [PubMed]
  13. J. Broky, K. M. Douglass, J. Ellis, and A. Dogariu, "Fluctuations of scattered waves: going beyond the ensemble average," Opt. Express 17, 10466-10471 (2009).
    [CrossRef] [PubMed]
  14. J. Broky, J. Ellis, and A. Dogariu, "Identifying non-stationarities in random EM fields: are speckles really disturbing?" Opt. Express 16, 14469-14475 (2008).
    [CrossRef] [PubMed]
  15. C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998).
  16. A. Dogariu, C. Kutsche, P. Likamwa, G. Boreman, and B. Moudgil, "Time-domain depolarization of waves retroreflected from dense colloidal media," Opt. Lett. 22, 585-587 (1997).
    [CrossRef] [PubMed]
  17. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).
  18. J. Ellis, and A. Dogariu, "Differentiation of globally unpolarized complex random fields," J. Opt. Soc. Am. A 21, 988-993 (2004).
    [CrossRef]
  19. J. Ellis, and A. Dogariu, "Complex degree of mutual plarization," Opt. Lett. 29, 536-538 (2004).
    [CrossRef] [PubMed]
  20. I. Freund, "Optical intensity fluctuations in multiply scattering media," Opt. Commun. 81, 251-258 (1991).
    [CrossRef]
  21. I. Freund, "Stokes-vector reconstruction," Opt. Lett. 15, 1425-1427 (1990).
    [CrossRef] [PubMed]
  22. Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
    [CrossRef]

2010 (1)

2009 (2)

2008 (2)

2007 (1)

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

2003 (1)

E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263-267 (2003).
[CrossRef]

1998 (1)

I. Freund, "‘1001’ correlations in random wave fields," Waves Random Media 8, 119-158 (1998).
[CrossRef]

1997 (1)

1991 (3)

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

I. Freund, "Optical intensity fluctuations in multiply scattering media," Opt. Commun. 81, 251-258 (1991).
[CrossRef]

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

1990 (2)

I. Freund, "Stokes-vector reconstruction," Opt. Lett. 15, 1425-1427 (1990).
[CrossRef] [PubMed]

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Amra, C.

Barabanenkov, Y. N.

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

Berkovits, R.

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Boreman, G.

Broky, J.

Chabanov, A. A.

A. A. Chabanov, B. Hu, and A. Z. Genack, "Dynamic Correlation in Wave Propagation in Random Media," Phys. Rev. Lett. 93, 123901 (2004).
[CrossRef] [PubMed]

Cohen, S. M.

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

Deumi, C.

Dogariu, A.

Douglass, K. M.

Eliyahu, D.

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

Ellis, J.

Freund, I.

I. Freund, "‘1001’ correlations in random wave fields," Waves Random Media 8, 119-158 (1998).
[CrossRef]

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

I. Freund, "Optical intensity fluctuations in multiply scattering media," Opt. Commun. 81, 251-258 (1991).
[CrossRef]

I. Freund, "Stokes-vector reconstruction," Opt. Lett. 15, 1425-1427 (1990).
[CrossRef] [PubMed]

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Genack, A. Z.

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

A. A. Chabanov, B. Hu, and A. Z. Genack, "Dynamic Correlation in Wave Propagation in Random Media," Phys. Rev. Lett. 93, 123901 (2004).
[CrossRef] [PubMed]

Georges, G.

Gilbert, O.

Hu, B.

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

A. A. Chabanov, B. Hu, and A. Z. Genack, "Dynamic Correlation in Wave Propagation in Random Media," Phys. Rev. Lett. 93, 123901 (2004).
[CrossRef] [PubMed]

Kaveh, M.

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Kravtsov, Y. A.

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

Kutsche, C.

Likamwa, P.

Moudgil, B.

Ozrin, V. D.

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

Rosenbluh, M.

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Saichev, A. I.

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

Sebbah, P.

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

Siozade, L.

Soriano, G.

Sorrentini, J.

Wolf, E.

E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263-267 (2003).
[CrossRef]

Zerrad, M.

Zhang, S.

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

I. Freund, "Optical intensity fluctuations in multiply scattering media," Opt. Commun. 81, 251-258 (1991).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Lett. A (1)

E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312, 263-267 (2003).
[CrossRef]

Phys. Rev. A (1)

S. M. Cohen, D. Eliyahu, I. Freund, and M. Kaveh, "Vector statistics of multiply scattered waves in random systems," Phys. Rev. A 43, 5748-5751 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (1)

I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, "Universal polarization correlations and microstatistics of optical waves in random media," Phys. Rev. B 42, 2613 (1990).
[CrossRef]

Phys. Rev. Lett. (3)

J. Ellis, and A. Dogariu, "Optical Polarimetry of Random Fields," Phys. Rev. Lett. 95, 203905 (2005).
[CrossRef] [PubMed]

A. A. Chabanov, B. Hu, and A. Z. Genack, "Dynamic Correlation in Wave Propagation in Random Media," Phys. Rev. Lett. 93, 123901 (2004).
[CrossRef] [PubMed]

S. Zhang, B. Hu, P. Sebbah, and A. Z. Genack, "Speckle evolution of diffusive and localized waves," Phys. Rev. Lett. 99, 063902 (2007).
[CrossRef] [PubMed]

Prog. Opt. (1)

Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, and A. I. Saichev, "Enhanced backscattering in optics," Prog. Opt. 29, 65-197 (1991).
[CrossRef]

Waves Random Media (1)

I. Freund, "‘1001’ correlations in random wave fields," Waves Random Media 8, 119-158 (1998).
[CrossRef]

Other (3)

C. Brosseau, Fundamentals of Polarized Light (Wiley, New York, 1998).

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, New York, 1993).

J. W. Goodman, Speckle Phenomena in Optics, 1st ed. (Roberts & Co., Englewood, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Intensity patterns scattered from four different media: a rough metallic surface (A), a thin kaolin based diffuse coating (B), a cellulose membrane (C), and a polyvinylidene fluoride membrane (D). The insets show the corresponding log(p(I/<I>)) vs. I/<I> distributions.

Fig. 2.
Fig. 2.

(a) Distribution of polarization states on the Poincare sphere. (b) Both the average state of polarization and the degree of polarization are ensemble properties of the distribution of polarization states.

Fig. 3.
Fig. 3.

The DoP calculated over an increasing integration area averaged over 100 integration centers. The error bars indicate the DoP standard deviation calculated for each integration area. Note that the y-scale in A is 0.95-1.0 while it is 0-1.0 for panels B, C, and D.

Fig. 4.
Fig. 4.

CDMP maps of the REF in Fig. 1 calculated with respect to incident state of polarization. Insets show binary images of corresponding maps thresholded at CDMP=0.5.

Fig. 5.
Fig. 5.

Probability density functions for the CDMP distribution maps shown in Fig. 4.

Fig. 6.
Fig. 6.

Size of CDMP speckle in units of intensity speckles as a function of CDMP threshold level. Different decay rates are evident for the four samples examined.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( r i ¯ ) = S 1 2 ( r i ¯ ) + S 2 2 ( r i ¯ ) + S 3 2 ( r i ¯ ) S 0 ( r i ¯ ) ,
S 1 ( r ) = E x * ( r ) E x ( r ) E y * ( r ) E y ( r )
S 2 ( r ) = E x * ( r ) E y ( r ) E y * ( r ) E x ( r )
S 3 ( r ) = i ( E x * ( r ) E y ( r ) E y * ( r ) E x ( r ) ) .
P ¯ A ( r ) = A S 1 2 dr + A S 2 2 dr + A S 3 2 dr A I dr .
V 2 ( r i , r 0 ) = ( E x * ( r i ) E x ( r 0 ) + E y * ( r i ) E y ( r 0 ) ) 2 ( E x ( r i ) 2 + E y ( r 0 ) 2 ) ( E x ( r i ) 2 + E y ( r 0 ) 2 ) .

Metrics