Abstract

This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010).
    [CrossRef]
  2. G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
    [CrossRef]
  3. D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
    [CrossRef]
  4. M. G. Legally, “Group IV Crystalline Nanomembranes: Materials, Technology, and Potential Applications,” Proc. IEEE 4244–4403, 104–106 (2009).
  5. E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
    [CrossRef]
  6. F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
    [CrossRef]
  7. M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
    [CrossRef]
  8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
    [CrossRef]
  9. H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
    [CrossRef]
  10. H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
    [CrossRef]
  11. H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
    [CrossRef]
  12. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [CrossRef]
  13. T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009).
    [CrossRef]
  14. R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Am. 68(5), 583–592 (1978).
    [CrossRef]
  15. J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
    [CrossRef]
  16. A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).
  17. S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
    [CrossRef] [PubMed]
  18. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  19. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
    [CrossRef]
  20. P. Pottier, M. Gnan, and R. M. De La Rue, “Efficient coupling into slow-light photonic crystal channel guides using photonic crystal tapers,” Opt. Express 15(11), 6569–6575 (2007).
    [CrossRef] [PubMed]
  21. G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
    [CrossRef]

2010 (3)

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010).
[CrossRef]

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

2009 (4)

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009).
[CrossRef]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

2008 (2)

D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

2007 (3)

2006 (2)

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

2005 (2)

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
[CrossRef]

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

2004 (1)

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

2001 (1)

F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
[CrossRef]

1998 (1)

J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
[CrossRef]

1978 (1)

Ayre, M.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Baets, R.

Bhattacharya, P.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

Bienstman, P.

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

Busch, K.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

Cavallo, F.

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010).
[CrossRef]

Celler, G. K.

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Chen, R. T.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

Chuwongin, S.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Cohen, G. M.

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

De La Rue, R. M.

Ebil, O.

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

Gnan, M.

Hosseini, A.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

Hovel, H. J.

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

Huang, J. Z.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
[CrossRef]

Kalvesten, E.

F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
[CrossRef]

Kamiya, T.

Kim, D.-H.

D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[CrossRef]

Kivshar, Y. S.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

Krauss, T. F.

Kwong, D. N.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

Laere, F. V.

Lagally, M. G.

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Lee, B. S.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

Lin, C.-Y.

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

Luyssaert, B.

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

Ma, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Marti, J.

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

Menard, E.

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
[CrossRef]

Mingaleev, S. F.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

Mooney, P. M.

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

Niklaus, F.

F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
[CrossRef]

Nuzzo, R. G.

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
[CrossRef]

Osgood, R. M.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
[CrossRef]

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Paruchuri, V. K.

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

Pottier, P.

Prather, D. W.

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

Roberts, M. M.

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Roelkens, G.

Rogers, J. A.

D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[CrossRef]

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
[CrossRef]

Saha, T. K.

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009).
[CrossRef]

Sanchis, P.

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

Savage, D. E.

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Scarmozzino, R.

J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
[CrossRef]

Schrauwen, J.

Sharkawy, A. S.

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

Shin, J.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

Stemme, G.

F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
[CrossRef]

Sun, L.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

Taillaert, D.

Thourhout, D. V.

Ulrich, R.

Yang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Yang, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Yuan, H. C.

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

Yuan, H.-C.

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

Zablocki, M. J.

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

Zhao, D.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Zhou, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009).
[CrossRef]

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

Adv. Mater. (1)

D.-H. Kim and J. A. Rogers; “ Stretchable electronics: Materials strategies and devices,” Adv. Mater. 20(24), 4887–4892 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

E. Menard, R. G. Nuzzo, and J. A. Rogers, “Bendable single crystal silicon thin film transistors formed by printing on plastic substrates,” Appl. Phys. Lett. 86(9), 093507 (2005).
[CrossRef]

H.-C. Yuan, J. Shin, G. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94(1), 013102 (2009).
[CrossRef]

G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, “Dislocation-free strained silicon-on-silicon by in-place bonding,” Appl. Phys. Lett. 86(25), 251902 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, “Analysis of butt coupling in photonic Crystals,” IEEE J. Quantum Electron. 40(5), 541–550 (2004).
[CrossRef]

IEEE J. Sel. Top. Quant, Elect. (1)

A. Hosseini, D. N. Kwong, C.-Y. Lin, B. S. Lee, and R. T. Chen, “Output Formulation for Symmetrically-Excited one-to-N Multimode Interference Coupler,” IEEE J. Sel. Top. Quant, Elect. 6(1), 53–60 (2010).

IEEE Photon. Technol. Lett. (1)

J. Z. Huang, R. Scarmozzino, and R. M. Osgood., “A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998).
[CrossRef]

J. Appl. Phys. (2)

H. C. Yuan, Z. Ma, M. M. Roberts, D. E. Savage, and M. G. Lagally, “High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers,” J. Appl. Phys. 100(1), 013708 (2006).
[CrossRef]

H. C. Yuan, G. K. Celler, and Z. Ma, “7.8-GHz flexible thin-film transistors on a low-temperature plastic substrate,” J. Appl. Phys. 102(3), 034501 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

F. Niklaus, E. Kalvesten, and G. Stemme, “Wafer-level membrane transfer bonding of polycrystalline silicon bolometers for use in infrared focal plane arrays,” J. Micromech. Microeng. 11(5), 509–513 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (3)

G. Qin, H. C. Yuan, G. K. Celler, W. Zhou, and Z. Ma, “Flexible microwave PIN diodes and switches employing transferrable single-crystal Si nanomembranes on plastic substrates,” J. Phys. D Appl. Phys. 42(23), 234006 (2009).
[CrossRef]

T. K. Saha and W. Zhou, “High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide,” J. Phys. D Appl. Phys. 42(8), 085115 (2009).
[CrossRef]

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys. 42(23), 234007 (2009).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. F. Mingaleev, A. E. Miroshnichenko, Y. S. Kivshar, and K. Busch, “All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046603 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. J. Zablocki, A. S. Sharkawy, O. Ebil, and D. W. Prather, “Nanomembrane enabled nanophotonic devices,” Proc. SPIE 7606, 76060V (2010).
[CrossRef]

Soft Matter (1)

F. Cavallo and M. G. Lagally, “Semiconductors turn soft: inorganic nanomembranes,” Soft Matter 6(3), 439–455 (2010).
[CrossRef]

Other (1)

M. G. Legally, “Group IV Crystalline Nanomembranes: Materials, Technology, and Potential Applications,” Proc. IEEE 4244–4403, 104–106 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A schematic of a 1xN MMI beam splitter. Inset is a cross section schematic of the SOI waveguiding structure.

Fig. 2
Fig. 2

(a) A schematic of the band-engineered PCW structure and the input/output coupling taper structure. The design parameters (r1 , r2 , r3 and dW) are shown. The input and output tapered PCW couplers are mirror images of each other in the actual implementation. (b) Band structure of the optimized photonic crystal waveguide (red). The blue and black lines show the light line (n=1.45) and the band gap edges, respectively.

Fig. 3
Fig. 3

(a) Fabrication process flow for multimode interference coupler, which includes pattern inversion through a lift-off process. (b) Fabrication process flow for photonic crystal waveguide, which includes removal of the un-patterned silicon nanomembrane.

Fig. 4
Fig. 4

SEM pictures of (a) 1x12 multimode interference coupler. (b) highly dispersive photonic crystal waveguide (before removal of un-patterned silicon nanomembrane).

Fig. 5
Fig. 5

(a) Output spots from 1x4 Multimode Interference coupler observed using an IR-CCD camera, (b) measured transmission spectrum of the fabricated photonic crystal waveguide (the dashed line indicates the band-edge), (c) measured group index (ng ) of the photonic crystal waveguide

Fig. 6
Fig. 6

(a) Silicon nanomembrane transfer process flow to transfer a single layer of nanomembrane onto a Kapton substrate, (b) additional steps required to perform transfer of a second layer on top of the first layer.

Fig. 7
Fig. 7

Optical microscope images showing single layer transfer of (a) photonic crystal waveguide (PCW), and (b) 1x4 multimode interference coupler (MMI) on Kapton substrate

Fig. 8
Fig. 8

Optical microscope image showing multilayer transfer of nanomembrane photonic devices on Kapton substrate. Two layer transfer of a photonic crystal waveguide (PCW) in the first layer and a 1x12 multimode interference coupler (MMI) on the second layer are shown. (a) shows the PCW (bottom layer) in focus, while (b) shows the 1x12 MMI coupler (top layer) in focus. The blurring of the devices in the other layers is due to the presence of a thick layer of SU-8 separating the two layers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L M M I = 3 r L π 4 N ,
v g ω k
G V D = ( 1 / v g ) ω
Δ t = L λ 0 λ 1 G V D ( λ ) d λ ,

Metrics