Abstract

Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  2. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).
  3. M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
    [CrossRef]
  4. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
    [CrossRef]
  5. Q. Wang and J. Yao, “UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
    [CrossRef]
  6. V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
    [CrossRef] [PubMed]
  7. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
    [CrossRef] [PubMed]
  8. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  9. Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007).
    [CrossRef]
  10. T.-H. Wu, J. P. Wu, and Y.-J. Chiu, “Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator,” Opt. Express 18(4), 3379–3384 (2010).
    [CrossRef] [PubMed]
  11. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  12. J. Li, B. P.-P. Kuo, and K. K.-Y. Wong, “Ultra-wideband pulse generation and based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
    [CrossRef]
  13. H. Huang, K. Xu, J. Li, J. Wu, X. Hong, and J. Lin, “UWB pulse generation and distribution using a NOLM based optical switch,” J. Lightwave Technol. 26(15), 2635–2640 (2008).
    [CrossRef]
  14. F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discriminator,” Electron. Lett. 43(2), 119–122 (2007).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, CA, 2007).
  16. J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
    [CrossRef]
  17. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
    [CrossRef]
  18. K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
    [CrossRef]
  19. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2007).
  20. C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
    [CrossRef]
  21. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
    [CrossRef] [PubMed]
  22. T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24(11), 4108–4119 (2006).
    [CrossRef]
  23. M. Abtahi, J. Magné, M. Mirshafiei, L. A. Rusch, and S. LaRochelle, “Generation of power-efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment,” J. Lightwave Technol. 26(5), 628–635 (2008).
    [CrossRef]
  24. Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
    [CrossRef]
  25. T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
    [CrossRef]
  26. H. Shams, A. Kaszubowska-Anandarajah, P. Perry, P. Anandarajah, and L. P. Barry, “Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique,” J. Opt. Commun. Netw. 2(3), 122–130 (2010).
    [CrossRef]

2010 (3)

2009 (2)

T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

J. Li, B. P.-P. Kuo, and K. K.-Y. Wong, “Ultra-wideband pulse generation and based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

2008 (4)

2007 (3)

2006 (5)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24(11), 4108–4119 (2006).
[CrossRef]

2004 (1)

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

2003 (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

2000 (2)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[CrossRef]

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

1985 (1)

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[CrossRef]

1982 (1)

Abtahi, M.

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Anandarajah, P.

Ashkin, A.

Barry, L. P.

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Blais, S.

Botineau, J.

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Chang, Y. M.

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

Chiu, Y.-J.

Chung, H.

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

Dutta, N. K.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

Fu, S.

Fukuchi, Y.

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Gibbon, T. B.

T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Hong, X.

Huang, H.

Kaszubowska-Anandarajah, A.

Kikuchi, K.

T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24(11), 4108–4119 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Kimura, Y.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[CrossRef]

Kitayama, K.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[CrossRef]

Koh, D.

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

Kuo, B. P.-P.

J. Li, B. P.-P. Kuo, and K. K.-Y. Wong, “Ultra-wideband pulse generation and based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

LaRochelle, S.

Lee, J. H.

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

Lee, J. S.

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

Li, J.

Lin, J.

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Magné, J.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Mirshafiei, M.

Monroy, I. T.

T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

V. Torres-Company, K. Prince, and I. T. Monroy, “Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion,” Opt. Lett. 33(3), 222–224 (2008).
[CrossRef] [PubMed]

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

Ozeki, Y.

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

Perry, P.

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Prince, K.

Rusch, L. A.

Scholtz, R. A.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[CrossRef]

Seikai, S.

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[CrossRef]

Shams, H.

Shum, P.

Stolen, R. H.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

Suzuki, J.

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Taira, K.

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Tanemura, T.

T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24(11), 4108–4119 (2006).
[CrossRef]

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Tang, M.

Torres-Company, V.

Wang, Q.

Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discriminator,” Electron. Lett. 43(2), 119–122 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

Win, M. Z.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[CrossRef]

Wong, K. K.-Y.

J. Li, B. P.-P. Kuo, and K. K.-Y. Wong, “Ultra-wideband pulse generation and based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

Wu, J.

Wu, J. P.

Wu, T.-H.

Xu, K.

Yao, J.

Q. Wang and J. Yao, “An electrically switchable optical ultrawideband pulse generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discriminator,” Electron. Lett. 43(2), 119–122 (2007).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Q. Wang and J. Yao, “UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

Yu, X.

T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

Zeng, F.

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discriminator,” Electron. Lett. 43(2), 119–122 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46(4), 317–319 (1985).
[CrossRef]

Electron. Lett. (3)

J. Suzuki, K. Taira, Y. Fukuchi, Y. Ozeki, T. Tanemura, and K. Kikuchi, “All-optical time-division add-drop multiplexer using optical fibre Kerr shutter,” Electron. Lett. 40(7), 445–446 (2004).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator,” Electron. Lett. 42(22), 1304–1305 (2006).
[CrossRef]

F. Zeng, Q. Wang, and J. Yao, “All-optical UWB impulse generation based on cross-phase modulation and frequency discriminator,” Electron. Lett. 43(2), 119–122 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. Li, B. P.-P. Kuo, and K. K.-Y. Wong, “Ultra-wideband pulse generation and based on cross-gain modulation in fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21(4), 212–214 (2009).
[CrossRef]

T. B. Gibbon, X. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-Wideband Radio Signals Distribution in FTTH Networks,” IEEE Photon. Technol. Lett. 20(11), 945–947 (2008).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

IEEE Trans. Commun. (1)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications,” IEEE Trans. Commun. 48(4), 679–689 (2000).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Commun. Netw. (1)

Y. M. Chang, J. S. Lee, D. Koh, H. Chung, and J. H. Lee, ““Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link”, To be published in J,” Opt. Commun. Netw. 2(8), 600–608 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (3)

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2007).

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, CA, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Ideal transfer function for the waveform conversion from Gaussian input pulses to doublet pulses. (b) Ideal transfer function for inverted doublet pulse generation.

Fig. 2
Fig. 2

(a) Commonly used Kerr shutter configuration and (b) its transfer functions depending on the SOPs of the probe beam and the polarizer.

Fig. 3
Fig. 3

(a) Polarization arrangement: probe beam, RHE SOP; polarizer, x-axis. (b) Calculated transmittance as a function of the ellipticity ratio a/b of the probe beam.

Fig. 4
Fig. 4

(a) Polarization arrangement: probe beam, RHE SOP; polarizer: y-axis. (b) Calculated transmittance as a function of the ellipticity ratio a/b of the probe beam.

Fig. 5
Fig. 5

(a) Polarization arrangement: probe beam, LHE SOP; polarizer, x-axis. (b) Calculated transmittance as a function of the ellipticity ratio a/b of the probe beam.

Fig. 6
Fig. 6

(a) Polarization arrangement: probe beam, LHE SOP; polarizer, y-axis. (b) Calculated transmittance as a function of the ellipticity ratio a/b of the probe beam.

Fig. 7
Fig. 7

(a) Experimental configuration to verify the proposed doublet pulse generation principle. (b) Measured autocorrelation trace of the actively-mode-locked fiber laser output pulse, which was used as an input pulse.

Fig. 8
Fig. 8

Procedure for the adjustment of the SOPs of the control and probe beams.

Fig. 9
Fig. 9

Experimentally measured and theoretically calculated transfer functions.

Fig. 10
Fig. 10

(a) Measured oscilloscope trace and (b) measured RF spectrum of the generated doublet pulse. The FCC mask is plotted by a dotted line.

Fig. 11
Fig. 11

(a) Measured oscilloscope trace and (b) measured RF spectrum of the generated inverted-doublet pulse.

Fig. 12
Fig. 12

(a) Experimental configuration for 1.25Gbit/s UWB doublet pulse transmission over a fiber/wireless link. (b) A real photo and a schematic diagram of the design of the antenna that was used in the experiment.

Fig. 13
Fig. 13

Measured RF spectra of the 1.25Gbit/s PRBS UWB doublet pulse stream. (a) Back-to-back and (b) 25-km transmission.

Fig. 14
Fig. 14

(a) Measured eye diagrams. (b) Measured BER vs. received optical power after 25-km fiber transmission.

Fig. 15
Fig. 15

RF spectra of the PRBS doublet data stream measured at the point: (a) between the transmitter antenna and the transmitter RF amplifier and (b) after the receiver RF amplifier cascaded to the receiver antenna.

Fig. 16
Fig. 16

, (a) Measured BER v.s. wireless transmission distance. (b) Eye diagram at BER = ~10−5 after 30-cm wireless transmission. The wireless signal transmission of the UWB doublet signal was carried out after 25-km transmission over a SMF link.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E probe = [ a cos φ + i b sin φ a sin φ i b cos φ ]  for RHE  [ a cos φ i b sin φ a sin φ + i b cos φ ]  for LHE
M = [ e i Γ / 2 cos 2 ψ + e i Γ / 2 sin 2 ψ            i sin ( Γ / 2 ) sin ( 2 ψ ) i sin ( Γ / 2 ) sin ( 2 ψ )                 e i Γ / 2 sin 2 ψ + e i Γ / 2 cos 2 ψ ]
Γ = 2 π λ ( n s n f ) L eff
n s = n s , l i n e a r + 2 n 2 | E C 2 |
n f = n f , l i n e a r + 2 n 2 B | E C 2 |
Γ = 8 3 π L eff λ n 2 | Ε C | 2
P = [ 1     0 0     0 ]  aligned to x-axis,  [ 0 0 0 1 ]  aligned to y-axis
E Out = PM E probe
T = | E out | 2 / | E probe | 2
T = a 2 cos 2 ( Γ / 2 ) + b 2 sin 2 ( Γ / 2 ) 2 a b cos ( Γ / 2 ) sin ( Γ / 2 )
T = a 2 sin 2 ( Γ / 2 ) + b 2 cos 2 ( Γ / 2 ) + 2 a b cos ( Γ / 2 ) sin ( Γ / 2 )
T = a 2 cos 2 ( Γ / 2 ) + b 2 sin 2 ( Γ / 2 ) + 2 a b cos ( Γ / 2 ) sin ( Γ / 2 )
T = a 2 sin 2 ( Γ / 2 ) + b 2 cos 2 ( Γ / 2 ) 2 a b cos ( Γ / 2 ) sin ( Γ / 2 )

Metrics