Abstract

The greenhouse-gas molecules CO2, CH4, and H2O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Inventory of U. S. Greenhouse Gas Emissions and Sinks, 1990–2008 (U.S. Environmental Protection Agency #430-R-10–006; April 2010); www.epa.gov/climatechange/emissions/usinventoryreport.html
  2. K. W. Busch, and M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Am. Chem. Soc., 1999).
  3. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  4. G. Berden, and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, 2009).
  5. Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002).
    [CrossRef]
  6. Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
    [CrossRef]
  7. Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
    [CrossRef] [PubMed]
  8. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
    [CrossRef]
  9. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
    [CrossRef]
  10. R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
    [CrossRef]
  11. Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Multi-wavelength sensing of greenhouse gases by rapidly swept continuous-wave cavity ringdown spectroscopy” in Conference on Lasers and Electro-Optics / International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMDD3; www.opticsinfobase.org/abstract.cfm?URI= CLEO-2009-CMDD3
  12. M. Wang, Y. Zhang, J. Liu, W. Liu, R. Kan, T. Wang, D. Chen, J. Chen, X. Wang, H. Xia, and X. Fang, “Applications of a tunable diode laser absorption spectrometer in monitoring greenhouse gases,” Chin. Opt. Lett. 4, 363–365 (2006).
  13. H. Xia, W. Liu, Y. Z. Zhang, R. K. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, and H. Geng, “An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 6, 437–440 (2008).
    [CrossRef]
  14. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000).
    [CrossRef]
  15. E. A. Fallows, T. G. Cleary, and J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48(4), 695–703 (2009).
    [CrossRef] [PubMed]
  16. C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
    [CrossRef]
  17. E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008).
    [CrossRef]
  18. A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
    [CrossRef]
  19. R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
    [CrossRef] [PubMed]
  20. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
    [CrossRef] [PubMed]
  21. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett. 32(3), 307–309 (2007).
    [CrossRef] [PubMed]
  22. F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
    [CrossRef]
  23. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, and Y. Cui, “Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 4, 116–118 (2006).
  24. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, and Y. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5, 54–57 (2007).
  25. A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007).
    [CrossRef]
  26. F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
    [CrossRef]
  27. L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
    [CrossRef]

2010

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

2009

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

E. A. Fallows, T. G. Cleary, and J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48(4), 695–703 (2009).
[CrossRef] [PubMed]

2008

H. Xia, W. Liu, Y. Z. Zhang, R. K. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, and H. Geng, “An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 6, 437–440 (2008).
[CrossRef]

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008).
[CrossRef]

2007

2006

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
[CrossRef]

R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, and Y. Cui, “Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 4, 116–118 (2006).

M. Wang, Y. Zhang, J. Liu, W. Liu, R. Kan, T. Wang, D. Chen, J. Chen, X. Wang, H. Xia, and X. Fang, “Applications of a tunable diode laser absorption spectrometer in monitoring greenhouse gases,” Chin. Opt. Lett. 4, 363–365 (2006).

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

2005

A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
[CrossRef]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

2004

Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

2003

R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
[CrossRef]

2002

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002).
[CrossRef]

2000

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39(12), 2009–2016 (2000).
[CrossRef]

Baer, D. S.

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Benner, D. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Birk, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Campargue, A.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007).
[CrossRef]

Champion, J.-P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Chen, D.

Chen, J.

Cleary, T. G.

Crosson, E. R.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008).
[CrossRef]

A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
[CrossRef]

Cui, Y.

Englich, F. V.

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
[CrossRef]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
[CrossRef]

Fallows, E. A.

Fang, X.

Geng, H.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Haase, C.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Hanson, R. K.

He, Y.

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
[CrossRef]

H. Xia, W. Liu, Y. Z. Zhang, R. K. Kan, M. Wang, Y. He, Y. Cui, J. Ruan, and H. Geng, “An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 6, 437–440 (2008).
[CrossRef]

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
[CrossRef]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
[CrossRef]

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002).
[CrossRef]

Hofbauer, H.

Hu, S. M.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

Hudson, D. D.

Jones, B. A.

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Kachanov, A. A.

A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
[CrossRef]

Kan, R.

Kan, R. K.

Kassi, S.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007).
[CrossRef]

Kuramoto, D. S.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Lasri, J.

Liu, A. W.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007).
[CrossRef]

Liu, J.

Liu, W.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Miller, J. H.

Moll, K. D.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett. 32(3), 307–309 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Orr, B. J.

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
[CrossRef]

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
[CrossRef]

Y. He and B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
[CrossRef]

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002).
[CrossRef]

Paldus, B. A.

A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Reese, R. B.

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Ruan, J.

Saad, N. M. R.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Shorten, R. A.

R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
[CrossRef]

Srivastava, N.

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

Tan, S. M.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Thorpe, M. J.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett. 32(3), 307–309 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Totschnig, G.

Wang, C.

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

Wang, J.

Wang, L.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

Wang, M.

Wang, T.

Wang, X.

Winter, F.

Xia, H.

Ye, J.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm,” Opt. Lett. 32(3), 307–309 (2007).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Zare, R. N.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Zhang, Y.

Zhang, Y. Z.

Appl. Opt.

Appl. Phys. B

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra,” Appl. Phys. B 94(1), 1–27 (2009).
[CrossRef]

Y. He and B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002).
[CrossRef]

Y. He and B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004).
[CrossRef]

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006).
[CrossRef]

C. Wang, N. Srivastava, B. A. Jones, and R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008).
[CrossRef]

E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008).
[CrossRef]

F. V. Englich, Y. He, and B. J. Orr, “Continuous-wave stimulated Raman gain spectroscopy with cavity ringdown detection,” Appl. Phys. B 83(1), 1–5 (2006).
[CrossRef]

Aust. J. Chem.

R. A. Shorten, Y. He, and B. J. Orr, “Swept-cavity ringdown absorption spectroscopy: put your laser light in and shake it all about,” Aust. J. Chem. 56(3), 219–231 (2003).
[CrossRef]

Chem. Phys. Lett.

A. W. Liu, S. Kassi, and A. Campargue, “High sensitivity CW-cavity ring down spectroscopy of CH4 in the 1.55 μm transparency window,” Chem. Phys. Lett. 447(1-3), 16–20 (2007).
[CrossRef]

Chin. Opt. Lett.

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Mol. Spectrosc.

L. Wang, S. Kassi, A. W. Liu, S. M. Hu, and A. Campargue, “High sensitivity absorption spectroscopy of methane at 80 K in the 1.58 μm transparency window: Temperature dependence and importance of the CH3D contribution,” J. Mol. Spectrosc. 261(1), 41–52 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009) (see also earlier editions of HITRAN.).
[CrossRef]

Opt. Lett.

Opt. Photonics News

A. A. Kachanov, E. R. Crosson, and B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10928–10932 (2009).
[CrossRef] [PubMed]

Science

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006).
[CrossRef] [PubMed]

Other

Y. He, R. Kan, F. V. Englich, W. Liu, and B. J. Orr, “Multi-wavelength sensing of greenhouse gases by rapidly swept continuous-wave cavity ringdown spectroscopy” in Conference on Lasers and Electro-Optics / International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMDD3; www.opticsinfobase.org/abstract.cfm?URI= CLEO-2009-CMDD3

G. Berden, and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, 2009).

Inventory of U. S. Greenhouse Gas Emissions and Sinks, 1990–2008 (U.S. Environmental Protection Agency #430-R-10–006; April 2010); www.epa.gov/climatechange/emissions/usinventoryreport.html

K. W. Busch, and M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Am. Chem. Soc., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top trace: three superimposed survey CRD absorption spectra of outdoor air measured by a swept-cavity near-IR cw-CRD spectrometer with a single tunable diode laser. Lower traces: stick spectra for the three greenhouse-gas components (CO2, CH4, and H2O vapor), based on the HITRAN spectroscopic database [9].

Fig. 2
Fig. 2

Layout of an optical fiber-coupled, multi-laser near-IR cw-CRD spectrometer. The length of the ringdown cavity is rapidly varied by a piezoelectric translator (PZT). Radiation from several fixed-wavelength diode lasers (DL1, DL2, …) is coupled to the cavity to allow simultaneous measurement of multiple gas species.

Fig. 3
Fig. 3

Signal voltages for a set of 0–3.5-ms rapidly swept scans of the optical cavity of a near-IR cw-CRD spectrometer. Trace (a): piezoelectric control voltage, spanning more than two free spectral ranges of the cavity. Trace (b): CRD signal events recorded with a single laser wavelength (λ1); these occur repetitively whenever the PZT-controlled cavity length is changed by a half-wavelength, so that the cavity round-trip optical pathlength is an integer multiple of the laser wavelength. Traces (c and d): corresponding CRD signal events with two and three laser wavelengths (λ1, λ2) and (λ1, λ2, λ3), respectively; the wavelengths have been finely adjusted to ensure that each signal event is cleanly separated in time within the cavity-sweep cycle of period ~1.1 ms.

Fig. 4
Fig. 4

Comparison of cw-CRD spectroscopic sensitivity (NEA) using assorted diode-laser sources. The performance of three ECDL-type light sources is depicted in the left-hand block (red traces) whereas that of three DFB-type diode lasers is depicted in the right-hand block (blue).

Fig. 5
Fig. 5

Observed cw-CRD (a) and HITRAN-simulated (b) absorption spectra of gas mixtures of CO2, CO, CH4, and H2O diluted in N2 at 1 atm in a region where CO2 (red) predominates over other components CO (green) and H2O (blue). The interference-free CO2 features marked <1> and <2> are preferred for CO2 detection by multi-laser cw-CRD spectroscopy.

Fig. 6
Fig. 6

Observed cw-CRD (a) and HITRAN-simulated (b) absorption spectra of gas mixtures of CO2, CO, CH4, and H2O diluted in N2 at 1 atm in a region where H2O (blue) predominates over other components CO (green) and CO2 (red). The interference-free H2O features marked <1> and <2> are preferred for H2O detection by multi-laser cw-CRD spectroscopy.

Fig. 7
Fig. 7

Use of swept-cavity cw-CRD spectroscopy to monitor greenhouse gases CO2 (red), CH4 (orange) and H2O (blue) in outdoor air at fixed diode-laser wavelengths of 1572.660 nm, 1635.414 nm, and 1586.288 nm, respectively. The decay rate of the absorber-free ringdown cavity at ~1635 nm is relatively high because of reduced mirror reflectivity, as indicated by measurements during the first 100 s of each trace when the cavity is flushed by pure N2 gas.

Metrics