Abstract

A time gating system has been constructed that is capable of recording high quality Raman spectra of highly fluorescing biological samples while operating below the photodamage threshold. Using a collinear gating geometry and careful attention to power conservation, we have achieved all-optical switching with a one picosecond gating time and 5% peak gating efficiency. The energy per pulse in this instrument is more than 3 orders of magnitude weaker than previous reports. Using this system we have performed proof-of-concept experiments on a sample composed of perylene dissolved in toluene, and the stem of a Jasminum multiflorum plant, the latter case being particularly important for the study of plants used in production of cellulosic biofuels. In both cases, a high SNR spectrum of the high-wavenumber region of the spectrum was recorded in the presence of an overwhelming fluorescence background.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Time-gated single photon counting enables separation of CARS microscopy data from multiphoton-excited tissue autofluorescence

Sonny Ly, Gregory McNerney, Samantha Fore, James Chan, and Thomas Huser
Opt. Express 15(25) 16839-16851 (2007)

Multimodal CARS microscopy of structured carbohydrate biopolymers

Aaron D. Slepkov, Andrew Ridsdale, Adrian F. Pegoraro, Douglas J. Moffatt, and Albert Stolow
Biomed. Opt. Express 1(5) 1347-1357 (2010)

Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging

Sunil Kumar, Tschackad Kamali, Jonathan M. Levitte, Ori Katz, Boris Hermann, Rene Werkmeister, Boris Považay, Wolfgang Drexler, Angelika Unterhuber, and Yaron Silberberg
Opt. Express 23(10) 13082-13098 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
    [Crossref] [PubMed]
  2. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
    [Crossref] [PubMed]
  3. C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
    [Crossref] [PubMed]
  4. K. Chen, Y. Qin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31, 2015–2017 (2006).
    [Crossref] [PubMed]
  5. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
    [Crossref] [PubMed]
  6. Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
    [Crossref] [PubMed]
  7. P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
    [Crossref]
  8. T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
    [Crossref]
  9. K. A. Dehring, N. J. Crane, A. R. Smukler, J. B. McHugh, B. J. Roessler, and M. D. Morris, “Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy,” Appl. Spectrosc. 60, 1134–1141 (2006).
    [Crossref] [PubMed]
  10. D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquidcore optical fiber Raman spectroscopy,” Appl. Spectrosc. 46, 1726–1734 (2007).
  11. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, “Effective rejection of fluorescence interference in raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46, 707–711 (1992).
    [Crossref]
  12. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
    [Crossref] [PubMed]
  13. B. D. Beier and A. J. Berger, “Method for automated background subtraction from raman spectra containing known contaminants,” The Analyst 134, 1198–1202 (2009).
    [Crossref] [PubMed]
  14. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
    [Crossref]
  15. P. Matousek, M. Towrie, A. Stanley, and A. W. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
    [Crossref]
  16. P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
    [Crossref]
  17. J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
    [Crossref]
  18. M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
    [Crossref]
  19. R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
    [Crossref]
  20. V. V. Yakovlev, “Time-gated confocal Raman microscopy,” Spectroscopy 22, 41–45 (2007).
  21. P. Matousek, “Deep non-invasive Raman spectroscopy of living tissue and powders,” Chem. Soc. Rev. 36 (2007).
    [Crossref] [PubMed]
  22. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
    [Crossref]
  23. N. Gierlinger and M. Schwanninger, “Chemical imaging of poplar wood cell walls by confocal Raman microscopy,” Plant Physiol. 140, 1246–1254 (2006).
    [Crossref] [PubMed]
  24. M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
    [Crossref]
  25. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003).
    [Crossref]
  26. R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
    [Crossref]
  27. A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
    [Crossref]
  28. J. K. Wilmshurst and H. J. Bernstein, “The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene-αα’-d16,” Can. J. Chemistry 35, 911–925 (1957).
    [Crossref]
  29. E. M. Rubin, “Genomics of cellulosic biofuels,” Nature 454, 841–845 (2008).
    [Crossref] [PubMed]
  30. Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
    [Crossref] [PubMed]
  31. J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
    [Crossref] [PubMed]
  32. A. Castellan and R. S. Davidson, “Steady-state and dynamic fluorescence emission from abies wood,” J Photoch. Photobio. A 78, 275–279 (1994).
    [Crossref]
  33. U. P. Agarwal and S. A. Ralph, “FT-Raman spectroscopy of wood: identifyin contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana),” Appl. Spectrosc. 51, 1648–1655 (1997).
    [Crossref]

2010 (4)

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

2009 (2)

B. D. Beier and A. J. Berger, “Method for automated background subtraction from raman spectra containing known contaminants,” The Analyst 134, 1198–1202 (2009).
[Crossref] [PubMed]

J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
[Crossref] [PubMed]

2008 (3)

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

E. M. Rubin, “Genomics of cellulosic biofuels,” Nature 454, 841–845 (2008).
[Crossref] [PubMed]

2007 (4)

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquidcore optical fiber Raman spectroscopy,” Appl. Spectrosc. 46, 1726–1734 (2007).

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

V. V. Yakovlev, “Time-gated confocal Raman microscopy,” Spectroscopy 22, 41–45 (2007).

P. Matousek, “Deep non-invasive Raman spectroscopy of living tissue and powders,” Chem. Soc. Rev. 36 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (2)

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

2004 (2)

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
[Crossref] [PubMed]

2003 (2)

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
[Crossref] [PubMed]

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

2002 (1)

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

2001 (1)

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

1999 (1)

1998 (1)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

1997 (1)

1994 (1)

A. Castellan and R. S. Davidson, “Steady-state and dynamic fluorescence emission from abies wood,” J Photoch. Photobio. A 78, 275–279 (1994).
[Crossref]

1992 (1)

1990 (1)

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

1957 (1)

J. K. Wilmshurst and H. J. Bernstein, “The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene-αα’-d16,” Can. J. Chemistry 35, 911–925 (1957).
[Crossref]

Adams, P. D.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Agarwal, U. P.

Baker, R.

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

Beier, B. D.

B. D. Beier and A. J. Berger, “Method for automated background subtraction from raman spectra containing known contaminants,” The Analyst 134, 1198–1202 (2009).
[Crossref] [PubMed]

Berger, A. J.

B. D. Beier and A. J. Berger, “Method for automated background subtraction from raman spectra containing known contaminants,” The Analyst 134, 1198–1202 (2009).
[Crossref] [PubMed]

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquidcore optical fiber Raman spectroscopy,” Appl. Spectrosc. 46, 1726–1734 (2007).

Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
[Crossref] [PubMed]

Bernstein, H. J.

J. K. Wilmshurst and H. J. Bernstein, “The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene-αα’-d16,” Can. J. Chemistry 35, 911–925 (1957).
[Crossref]

Bille, J. F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Billheimer, D.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

Blau, W. J.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Bohn, P. W.

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

Burkhardt, H.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Carroll, A.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Caspers, P. J.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Castellan, A.

A. Castellan and R. S. Davidson, “Steady-state and dynamic fluorescence emission from abies wood,” J Photoch. Photobio. A 78, 275–279 (1994).
[Crossref]

Chaibang, A.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Chan, J. W.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Chen, K.

Cherepy, N. J.

Christensen, D. H.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Chu, L.-Q.

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

Coates, C. G.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Crane, N. J.

Creely, C. M.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Davidson, R. S.

A. Castellan and R. S. Davidson, “Steady-state and dynamic fluorescence emission from abies wood,” J Photoch. Photobio. A 78, 275–279 (1994).
[Crossref]

De Luca, A. C.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Dehring, K. A.

Dholakia, K.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Ding, S.-Y.

J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
[Crossref] [PubMed]

Draper, E. R. C.

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Dyer, J.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Ellis, D. L.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[Crossref]

Gavey, J. D.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

George, M. W.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Gierlinger, N.

N. Gierlinger and M. Schwanninger, “Chemical imaging of poplar wood cell walls by confocal Raman microscopy,” Plant Physiol. 140, 1246–1254 (2006).
[Crossref] [PubMed]

Gniadecka, M.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Gniadecki, R.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Goodship, A. E.

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Götz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Grills, D. C.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Hansen, L. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Harz, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Hayes, D. P.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Hercogova, J.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Herrington, C. S.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Heule, F.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Himmel, M. E.

J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
[Crossref] [PubMed]

Hofer, S.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Horvath, C.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Hudson, S.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Huser, T.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Juhasz, T.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Kelly, J. M.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Kirkpatrick, S.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003).
[Crossref]

Krol, D.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[Crossref]

Kwok, W. M.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

Lane, S. M.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Lankers, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Li, Z.

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

Lieber, C. A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
[Crossref] [PubMed]

Loesel, F. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Ma, C.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

Mahadevan-Jansen, A.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
[Crossref] [PubMed]

Majumder, S. K.

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

Mathies, R. A.

Matousek, P.

P. Matousek, “Deep non-invasive Raman spectroscopy of living tissue and powders,” Chem. Soc. Rev. 36 (2007).
[Crossref] [PubMed]

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

P. Matousek, M. Towrie, A. Stanley, and A. W. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
[Crossref]

Mazilu, M.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

McGarvey, J. J.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

McHugh, J. B.

McLean, D. G.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003).
[Crossref]

McMaster, J.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Moritz, T. J.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

Morris, M. D.

K. A. Dehring, N. J. Crane, A. R. Smukler, J. B. McHugh, B. J. Roessler, and M. D. Morris, “Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy,” Appl. Spectrosc. 60, 1134–1141 (2006).
[Crossref] [PubMed]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Motzkus, H.-W.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Neumann, M. H. A.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Nielsen, O. F.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Nijssen, A.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Parker, A. W.

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

P. Matousek, M. Towrie, A. Stanley, and A. W. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
[Crossref]

Peschke, K.-D.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Petty, M. C.

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

Philipsen, P. A.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Phillips, D.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

Polage, C. R.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

Pöpp, J.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Puppels, G. J.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Qi, D.

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquidcore optical fiber Raman spectroscopy,” Appl. Spectrosc. 46, 1726–1734 (2007).

Qin, Y.

Quivey, R. G.

Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
[Crossref] [PubMed]

Ralph, S. A.

Riches, A.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Roessler, B. J.

Rogers, K.

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

Ronayne, K. L.

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

Ronneberger, O.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Rösch, P.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Rossen, K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Rubin, E. M.

E. M. Rubin, “Genomics of cellulosic biofuels,” Nature 454, 841–845 (2008).
[Crossref] [PubMed]

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[Crossref]

Schmidt, M.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Schmitt, M.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Schuck, P. J.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Schut, T. C. B.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

Schwanninger, M.

N. Gierlinger and M. Schwanninger, “Chemical imaging of poplar wood cell walls by confocal Raman microscopy,” Plant Physiol. 140, 1246–1254 (2006).
[Crossref] [PubMed]

Schwartzberg, A. M.

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Shi, D.

Shreve, A. P.

Sigurdsson, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Sluch, M. I.

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

Smukler, A. R.

Stanley, A.

Stone, N.

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Sun, M.

Sutherland, R. L.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003).
[Crossref]

Sweedler, J. V.

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

Taylor, D. S.

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Thiele, H.

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Thomsen, H. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Toner, W. T.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

Towrie, M.

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

P. Matousek, M. Towrie, A. Stanley, and A. W. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
[Crossref]

Tuscano, J.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Vitukhnovsky, A. G.

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

Warren, J. G.

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

Weinstein, J. A.

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Wessel, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Wilmshurst, J. K.

J. K. Wilmshurst and H. J. Bernstein, “The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene-αα’-d16,” Can. J. Chemistry 35, 911–925 (1957).
[Crossref]

Wulf, H. C.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

Yakovlev, V. V.

V. V. Yakovlev, “Time-gated confocal Raman microscopy,” Spectroscopy 22, 41–45 (2007).

Yarbrough, J. M.

J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
[Crossref] [PubMed]

Zheng, F.

Zhu, Q. Y.

Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
[Crossref] [PubMed]

Zwerdling, T.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

Anal. Chem. (3)

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref] [PubMed]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

Z. Li, L.-Q. Chu, J. V. Sweedler, and P. W. Bohn, “Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials,” Anal. Chem. 82, 2608–2611 (2010).
[Crossref] [PubMed]

Appl. Environ. Microb. (1)

P. Rösch, M. Harz, M. Schmitt, K.-D. Peschke, O. Ronneberger, H. Burkhardt, H.-W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Pöpp, “Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations,” Appl. Environ. Microb. 71, 1626–1637 (2005).
[Crossref]

Appl. Phys. B: Lasers O. (1)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B: Lasers O. 66, 121–128 (1998).
[Crossref]

Appl. Spectrosc. (6)

Biochem. and Bioph. Res. Co. (1)

M. Schmidt, A. M. Schwartzberg, A. Carroll, A. Chaibang, P. D. Adams, and P. J. Schuck, “Raman imaging of cell wall polymers in Aradopsis thaliana,” Biochem. and Bioph. Res. Co. 395, 521–523 (2010).
[Crossref]

Biophys. J. (1)

T. J. Moritz, D. S. Taylor, C. R. Polage, D. Krol, S. M. Lane, and J. W. Chan, “Raman spectroscopic signatures of the metabolic states of escherichia coli cells and their dependence on antibiotics treatment,” Biophys. J. 98, 742a (2010).
[Crossref]

Biotechnol. Biofuels (1)

J. M. Yarbrough, M. E. Himmel, and S.-Y. Ding, “Plant cell wall characterization using scanning probe microscopy techniques,” Biotechnol. Biofuels 2, 17 (2009).
[Crossref] [PubMed]

Can. J. Chemistry (1)

J. K. Wilmshurst and H. J. Bernstein, “The infrared and Raman spectra of toluene, toleuene-α-d3, m-xylene, and m-xylene-αα’-d16,” Can. J. Chemistry 35, 911–925 (1957).
[Crossref]

Chem. Phys. Lett. (1)

A. G. Vitukhnovsky, M. I. Sluch, J. G. Warren, and M. C. Petty, “The fluorescence of perylene-doped langmuir—blodgett films,” Chem. Phys. Lett. 173, 425–429 (1990).
[Crossref]

Chem. Soc. Rev. (1)

P. Matousek, “Deep non-invasive Raman spectroscopy of living tissue and powders,” Chem. Soc. Rev. 36 (2007).
[Crossref] [PubMed]

J Photoch. Photobio. A (1)

A. Castellan and R. S. Davidson, “Steady-state and dynamic fluorescence emission from abies wood,” J Photoch. Photobio. A 78, 275–279 (1994).
[Crossref]

J. Biomed. Opt. (3)

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. C. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Q. Y. Zhu, R. G. Quivey, and A. J. Berger, “Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy,” J. Biomed. Opt. 9, 1182–1186 (2004).
[Crossref] [PubMed]

C. A. Lieber, S. K. Majumder, D. Billheimer, D. L. Ellis, and A. Mahadevan-Jansen, “Raman microspectroscopy for skin cancer detection in vitro,” J. Biomed. Opt. 13, 024013 (2008).
[Crossref] [PubMed]

J. Invest. Dermatol. (2)

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122, 443–449 (2004).
[Crossref] [PubMed]

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. A. Neumann, and G. J. Puppels, “Discriminating basal cell carinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc. 32, 983–988 (2001).
[Crossref]

Nature (1)

E. M. Rubin, “Genomics of cellulosic biofuels,” Nature 454, 841–845 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006).
[Crossref]

Photoch. Photobio. Sci. (1)

J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie, and J. A. Weinstein, “The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study,” Photoch. Photobio. Sci. 2, 542–554 (2003).
[Crossref]

Plant Physiol. (1)

N. Gierlinger and M. Schwanninger, “Chemical imaging of poplar wood cell walls by confocal Raman microscopy,” Plant Physiol. 140, 1246–1254 (2006).
[Crossref] [PubMed]

Spectroscopy (1)

V. V. Yakovlev, “Time-gated confocal Raman microscopy,” Spectroscopy 22, 41–45 (2007).

The Analyst (2)

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” The Analyst 132, 48–53 (2007).
[Crossref]

B. D. Beier and A. J. Berger, “Method for automated background subtraction from raman spectra containing known contaminants,” The Analyst 134, 1198–1202 (2009).
[Crossref] [PubMed]

Other (1)

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, New York, NY, 2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the Kerr gating system. The pump beam path is shown as a solid red line, while the SHG path is shown as a solid navy line. The path where Raman and Fluorescence are overlapped is shown in navy with a dash-dotted line style, while the path where the Fluorescence has been temporally filtered out is shown in navy with a dashed line style. Abbreviations as follows: BPF, band pass filter; CCD, charge-coupled device; DCM, dichroic mirror; FI, Faraday isolator; λ/2, half wave plate; LPF, long-pass filter; NLM, nonlinear medium; P, polarizer; SHG, second harmonic generation crystal. (b) Diagram of pulse propagation through the Kerr shutter. The pump beam is shown in red, while the raman and fluorescence signals are shown in green and blue, respectively. A diagram of the orientations of the polarizations of the three beams at several locations is shown above the beam path. Note that the polarizations are linear at all locations and the elliptical shape is for figure clarity only.

Fig. 2.
Fig. 2.

Plot of gating efficiency versus temporal delay between the pump and SHG pulses. Delays were measured moving a calibrated translation stage and converting added pathlength to time delay.

Fig. 3.
Fig. 3.

Top: Raw spectra of perylene dissolved in toluene. Red curve shows the spectrum taken with the gate held open (analyzer set for maximum transmission). Black curve shows the spectrum taken with the analyzer aligned for minimum transmission and a pump beam applied (the gated spectrum). Green curve shows the spectrum taken with only the pump beam applied. Blue curve shows the spectum taken with the analyzer aligned for minimum transmission and no pump beam applied (gate held closed). Dashed magenta lines indicate spectral region shown in panel below. Bottom: Spectra of perylene dissolved in toluene after fluorescence background subtraction. Red curve is the spectrum with the gate held open, and the blue curve is the gated spectrum. Black curve is a spectrum of pure toluene as a reference. The gated spectrum clearly shows the high wavenumber peaks of toluene.

Fig. 4.
Fig. 4.

Top: Raw spectra of a star jasmine stem. Red curve shows the spectrum taken with the gate held open (analyzer set for maximum transmission). Black curve shows the spectrum taken with the analyzer aligned for minimum transmission and a pump beam applied. Green curve shows the spectrum taken with only the pump beam applied. Blue curve shows the spectum taken with the analyzer aligned for minimum transmission and no pump beam applied. Dashed magenta lines indicate spectral region shown in panel below. Bottom: Spectra of a star jasmine stem after fluorescence background subtraction. Red curve is the spectrum with the gate held open, and the blue curve is the gated spectrum. The gated spectrum clearly shows the characteristic high wavenumber peak of cellulose.

Fig. 5.
Fig. 5.

A curve showing the theoretical evolution of shot-noise-limited signal-to-noise versus integration time for the Raman and fluorescence strengths observed in the star jasmine stem experiment. The gated spectrum, acquired in 20 minutes, had a SNR of 118. To achieve a comparable SNR without optical gating (and assuming shot noise is the dominant noise source), one would have to acquire for 540 minutes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ = 2 π n 2 λ LI .
E = π d 2 λ T 8 L n 2 ,
E = λ 2 T 2 n 2 .
η ( delay ) = Area 404 ( delay ) Area 404 open .

Metrics