Abstract

We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 – 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Inc., New Jersey, USA, 2004).
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22(5), 340-342 (1997).
    [CrossRef] [PubMed]
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28(21), 2067-2069 (2003).
    [CrossRef] [PubMed]
  5. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889-894 (2003).
    [CrossRef] [PubMed]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11(18), 2183-2189 (2003).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
    [CrossRef] [PubMed]
  8. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12(11), 2435-2447 (2004).
    [CrossRef] [PubMed]
  9. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12(10), 2156-2165 (2004).
    [CrossRef] [PubMed]
  10. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12(11), 2404-2422 (2004).
    [CrossRef] [PubMed]
  11. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16(19), 15149-15169 (2008).
    [CrossRef] [PubMed]
  12. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14(10), 4403-4411 (2006).
    [CrossRef] [PubMed]
  13. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32(4), 361-363 (2007).
    [CrossRef] [PubMed]
  14. D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).
  15. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14(13), 5937-5944 (2006).
    [CrossRef] [PubMed]
  16. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14(26), 12902-12908 (2006).
    [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13(9), 3513-3528 (2005).
    [CrossRef] [PubMed]
  18. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14(8), 3225-3237 (2006).
    [CrossRef] [PubMed]
  19. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second," Opt. Express 18(14), 14685-14704 (2010).
    [CrossRef] [PubMed]
  20. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).
  21. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17(17), 14880-14894 (2009).
    [CrossRef] [PubMed]
  22. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, "andW. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13(9), 3252-3258 (2005).
    [CrossRef] [PubMed]
  23. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15(10), 6121-6139 (2007).
    [CrossRef] [PubMed]
  24. S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, "Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range," Opt. Express 17(26), 24304-24316 (2009).
    [CrossRef]
  25. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
    [CrossRef] [PubMed]
  26. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
    [CrossRef]
  27. M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).
  28. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13(26), 10652-10664 (2005).
    [CrossRef] [PubMed]
  29. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, "K-space linear Fourier domain mode locked laser and applications for optical coherence tomography," Opt. Express 16(12), 8916-8937 (2008).
    [CrossRef] [PubMed]
  30. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
    [CrossRef]
  31. J. Xi, L. Huo, J. Li, and X. Li, "Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography," Opt. Express 18(9), 9511-9517 (2010).
    [CrossRef] [PubMed]
  32. B. Potsaid, J. Liu, V. Manjunath, I. Gorczynska, V. J. Srinivasan, J. Jiang, S. Barry, A. Cable, J. S. Duker, and J. G. Fujimoto, "Ultrahigh-speed volumetric ophthalmic OCT imaging at 850nm and 1050nm," vol. 7550, p. 75501K (SPIE, 2010).
  33. B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17(5), 4134-4150 (2009).
    [CrossRef] [PubMed]
  34. American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Z136.1," (2000).
  35. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14(10), 4380-4394 (2006).
    [CrossRef] [PubMed]
  36. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17(5), 4084-4094 (2009).
    [CrossRef] [PubMed]
  37. J. Hirsch, and C. A. Curcio, "The spatial resolution capacity of human foveal retina," Vision Res. 29, 1095-1101 (1989).
    [CrossRef] [PubMed]
  38. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]
  39. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express 17(6), 4842-4858 (2009).
    [CrossRef] [PubMed]
  40. S. Makita, M. Yamanari, M. Miura, and Y. Yasuno, "High-sensitive blood flow imaging of the retina and choroid by using double-beam optical coherence angiography," vol. 7550, p. 75500E (SPIE, 2010).

2010

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

J. Xi, L. Huo, J. Li, and X. Li, "Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography," Opt. Express 18(9), 9511-9517 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second," Opt. Express 18(14), 14685-14704 (2010).
[CrossRef] [PubMed]

2009

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17(5), 4084-4094 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17(5), 4134-4150 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express 17(6), 4842-4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17(17), 14880-14894 (2009).
[CrossRef] [PubMed]

S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, "Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range," Opt. Express 17(26), 24304-24316 (2009).
[CrossRef]

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

2008

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, "K-space linear Fourier domain mode locked laser and applications for optical coherence tomography," Opt. Express 16(12), 8916-8937 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16(19), 15149-15169 (2008).
[CrossRef] [PubMed]

2007

2006

2005

2004

2003

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
[CrossRef] [PubMed]

1997

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

1989

J. Hirsch, and C. A. Curcio, "The spatial resolution capacity of human foveal retina," Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

Akiba, M.

Bajraszewski, T.

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12(10), 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
[CrossRef] [PubMed]

Biedermann, B. R.

Bird, A. C.

Bizheva, K.

Bouma, B.

Bouma, B. E.

Boyd, S.

Burnes, D.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Burnes, D. L.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

Cense, B.

Chan, K.-P.

Chang, S.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, T.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12(11), 2435-2447 (2004).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
[CrossRef] [PubMed]

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16(19), 15149-15169 (2008).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14(26), 12902-12908 (2006).
[CrossRef] [PubMed]

Chinn, S. R.

Choi, S. S.

Choma, M.

Chong, C.

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Hirsch, and C. A. Curcio, "The spatial resolution capacity of human foveal retina," Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

de Bruin, M.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
[CrossRef] [PubMed]

Dracopoulos, A.

Drexler, W.

Duker, J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12(11), 2404-2422 (2004).
[CrossRef] [PubMed]

Egan, C. A.

Eigenwillig, C. M.

Esmaeelpour, M.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17(5), 4134-4150 (2009).
[CrossRef] [PubMed]

Esmaili, D.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Evans, J. W.

Fercher, A.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16(19), 15149-15169 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32(4), 361-363 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14(8), 3225-3237 (2006).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22(5), 340-342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Fuller, A. R.

Gao, W.

Gora, M.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hamann, B.

Hariri, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Hermann, B.

Hirsch, J.

J. Hirsch, and C. A. Curcio, "The spatial resolution capacity of human foveal retina," Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

Hitzenberger, C.

Hofer, B.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17(5), 4134-4150 (2009).
[CrossRef] [PubMed]

Hong, Y.

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second," Opt. Express 18(14), 14685-14704 (2010).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17(17), 14880-14894 (2009).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, "K-space linear Fourier domain mode locked laser and applications for optical coherence tomography," Opt. Express 16(12), 8916-8937 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32(4), 361-363 (2007).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14(8), 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13(9), 3513-3528 (2005).
[CrossRef] [PubMed]

Huo, L.

Hyun, C.

Itoh, M.

Iwasaki, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Izatt, J.

Jiang, J.

Jiang, J. Y.

Jones, S.

Jonnal, R. S.

Kajic, V.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Kaluzny, B. J.

Kapoor, K.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

Karnowski, K.

Kawana, K.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Kerbage, C.

Klein, T.

Ko, T.

Kowalczyk, A.

Le, T.

Lee, E. C.

Leitgeb, R.

Li, J.

Li, X.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Loewenstein, J.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

Madjarova, V. D.

Makita, S.

Marcos, S.

Miller, D. T.

Miura, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15(10), 6121-6139 (2007).
[CrossRef] [PubMed]

Moayed, A. A.

Morosawa, A.

Mujat, M.

Nassif, N.

North, R. V.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

Okamoto, F.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Olivier, S.

Oshika, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Palte, G.

Park, B.

Park, B. H.

Pierce, M.

Pierce, M. C.

Potsaid, B.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Reisen, P.

Rha, J.

Sakai, T.

Sarunic, M.

Sato, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Sattmann, H.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

Schuman, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Sheen, N.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22(5), 340-342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Taira, K.

Tearney, G.

Tearney, G. J.

Torti, C.

Tumlinson, A. R.

Unterhuber, A.

Werner, J. S.

Wieser, W.

Wojtkowski, M.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express 17(6), 4842-4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17(17), 14880-14894 (2009).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14(8), 3225-3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13(9), 3513-3528 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12(11), 2404-2422 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
[CrossRef] [PubMed]

Xi, J.

Yamanari, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15(10), 6121-6139 (2007).
[CrossRef] [PubMed]

Yang, C.

Yasuno, Y.

Yatagai, T.

Yelin, R.

Yun, S. H.

Yun, S.-H.

Zawadzki, R. J.

Zhang, Y.

Invest. Ophthalmol. Vis. Sci.

D. M. de Bruin, D. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. Chen, D. Esmaili, and J. F. de Boer, "In vivo three-dimensional imaging of neovascular age related macular degeneration using optical frequency domain imaging at 1050 nm," Invest. Ophthalmol. Vis. Sci. 07, 1553 (2008).

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head," Invest. Ophthalmol. Vis. Sci. 08, 2127 (2008).

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, "Visualization of Sub-retinal Pigment Epithelium Morphologies of Exudative Macular Diseases by High-Penetration Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 50(1), 405-413 (2009).
[CrossRef]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. Sheen, and R. V. North, "andW. Drexler, "Three-dimensional 1060nm OCT: Choroidal thickness maps in normals and improved posterior segment visualization in cataract patients," Invest. Ophthalmol. Vis. Sci. 10, 5196 (2010).

J. Biomed. Opt.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, "Three-dimensional point wise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging," J. Biomed. Opt. 14(2), 024016 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7(3), 457-463 (2002).
[CrossRef] [PubMed]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Nat. Photonics

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1(1), 709-716 (2007).
[CrossRef]

Opt. Express

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11(18), 2183-2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12(10), 2156-2165 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12(11), 2404-2422 (2004).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, "Ultrahigh resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12(11), 2435-2447 (2004).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, "andW. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13(9), 3252-3258 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13(9), 3513-3528 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13(26), 10652-10664 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14(8), 3225-3237 (2006).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14(10), 4380-4394 (2006).
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14(10), 4403-4411 (2006).
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14(13), 5937-5944 (2006).
[CrossRef] [PubMed]

H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14(26), 12902-12908 (2006).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889-894 (2003).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15(10), 6121-6139 (2007).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, "K-space linear Fourier domain mode locked laser and applications for optical coherence tomography," Opt. Express 16(12), 8916-8937 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, "Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second," Opt. Express 16(19), 15149-15169 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, "Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography," Opt. Express 17(5), 4084-4094 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography," Opt. Express 17(5), 4134-4150 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, "Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera," Opt. Express 17(6), 4842-4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range," Opt. Express 17(17), 14880-14894 (2009).
[CrossRef] [PubMed]

S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, "Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range," Opt. Express 17(26), 24304-24316 (2009).
[CrossRef]

J. Xi, L. Huo, J. Li, and X. Li, "Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography," Opt. Express 18(9), 9511-9517 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 G Voxels per second," Opt. Express 18(14), 14685-14704 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254(5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Vision Res.

J. Hirsch, and C. A. Curcio, "The spatial resolution capacity of human foveal retina," Vision Res. 29, 1095-1101 (1989).
[CrossRef] [PubMed]

Other

S. Makita, M. Yamanari, M. Miura, and Y. Yasuno, "High-sensitive blood flow imaging of the retina and choroid by using double-beam optical coherence angiography," vol. 7550, p. 75500E (SPIE, 2010).

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Inc., New Jersey, USA, 2004).

B. Potsaid, J. Liu, V. Manjunath, I. Gorczynska, V. J. Srinivasan, J. Jiang, S. Barry, A. Cable, J. S. Duker, and J. G. Fujimoto, "Ultrahigh-speed volumetric ophthalmic OCT imaging at 850nm and 1050nm," vol. 7550, p. 75501K (SPIE, 2010).

American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Z136.1," (2000).

Supplementary Material (3)

» Media 1: MOV (3067 KB)     
» Media 2: MOV (2298 KB)     
» Media 3: MOV (3333 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

System layout. (A) Swept laser source for 100kHz OCT imaging. (B) Swept laser source for 200kHz and 400kHz OCT imaging. (C) System configuration for retinal imaging. (D) Patient interface for anterior segment imaging. (E) System configuration for sweep calibration.

Fig. 2.
Fig. 2.

Short cavity light source. (A) Spectrum measured with OSA. (B) Sweep trigger signal, laser output, and A/D clock signal from the swept laser source. (C) OCT fringe data acquired at fixed 400 MSPS clock rate (top) and optically derived, variable frequency A/D clock (bottom) of a shallow fringe (left) and deep fringe (right). The red line indicates the phase of the fringe. (D) Laser sweeps from buffered configuration showing master sweep (top), copy sweep (middle), and combined master and copy sweeps (bottom). The usable portion of the sweep, considering sweep overlap, is indicated in red.

Fig. 3.
Fig. 3.

Point Spread Function (PSF) and sensitivity roll-off plot comparisons. (A) 100kHz axial scan rate configuration with optical A/D clocking. (B) 200kHz and 400kHz axial scan rate configurations with fixed 400 MSPS internal A/D clocking. (C) 100kHz axial scan rate configuration with digital storage scope acquisition at 1 GSPS. (D) Comparison of sensitivity roll-off performance for different OCT technologies.

Fig. 4.
Fig. 4.

Depth range and sensitivity roll-off comparison of different OCT technologies demonstrated with retinal imaging of the same eye. Plots of the sensitivity roll-off performance for the different configurations shown are displayed in Fig. 3D, as indicated by the marker symbols.

Fig. 5.
Fig. 5.

Comparison of cross sectional OCT retinal images acquired at 100kHz and 200kHz axial scan rate of the macula and optic disc. Images are cropped in depth to span 1.4mm for the macula and 2.3mm for the disc.

Fig. 6.
Fig. 6.

Images of the (A) macula and (B) optic disc consisting of an average of 10 rapidly repeated OCT cross sectional scans acquired at 100kHz axial scan rate. Images are cropped in depth to span 1.4mm for the macula and 2.3mm for the disc.

Fig. 7.
Fig. 7.

(A) OCT fundus image of 3D volume acquired at 100kHz with 500×500 axial scans over 6mm×6mm (2.6 sec). (B) 100kHz cross sectional image. (C) 3D volume rendering of 100kHz data (Media 1). (C) OCT fundus image of 3D volume acquired at 200kHz with 700×700 axial scans over 6mm×6mm (2.6 sec). (D) 200kHz cross sectional image. (E) 3D volume rendering of 200kHz data. Images are cropped in depth to span 2mm.

Fig. 8.
Fig. 8.

Large volume data sets acquired at 200kHz axial scan rate in 6.3 seconds consisting of 1100×1100 axial scans over 12mm×12mm. (A) OCT fundus image. (B) Fundus photo. (C) OCT cross sectional image through the disc. (D) OCT cross sectional image through the fovea. (E) Averaged image consisting of 5 adjacent OCT cross sectional images. (F) 3D rendering of volumetric OCT data. Images are cropped in depth to span 2.0mm.

Fig. 9.
Fig. 9.

Cone imaging at 200kHz axial scan rate. (A) Large area OCT fundus view of retina showing boxes to indicate regions of cone imaging. (B) Cone photoreceptor mosaic formed by merging data from 6 volumes covering 700um×700um square patches consisting of 600×600 axial scans acquired in 2 seconds each. (C) Zoomed in images from volumes 1–7 are cropped to 150×150 axial scans and are shown in 1Z–7ZF. Individual cone photoreceptors can be clearly seen with decreasing size and spacing in the region progressing from the optic disc to the fovea in images 1Z–6Z. The small and closely spaced cones can not be resolved in 7Z, near the fovea, and 7ZF, located at the fovea center.

Fig. 10.
Fig. 10.

Anterior segment images acquired at 100kHz axial scan rate. (A) 3D OCT volume of the angle consisting of 500×500 axial scans over 3.5×3.5mm acquired in 2.6 seconds using optical clocking (Media 2). (B) Cross sectional image of the angle from (A) consisting of the average of two neighboring cross sectional scans. (C) Zoomed in region from (B) showing Schlemm’s canal (SC) and the trabecular meshwork (TM). (D) OCT en face view extracted from (A) consisting of a depth averaged over 2 en face planes showing coronal section through structures related to outflow (Media 3). (E) OCT cross sectional image of the cornea, iris, and anterior lens acquired using 1 GSPS sampling with an oscilloscope showing high axial resolution imaging over a long imaging range. The image is cropped in depth to span 4.9mm.

Fig. 11.
Fig. 11.

Dual OCT beam 400kHz axial scan rate imaging results. (A) Dual beam scanning system used in patient interface module. (B) 3D rendering showing the independent volumes that were acquired in parallel. (C) OCT fundus image generated from combining the two volumes acquired in parallel. (D) Example cross sectional OCT image acquired from first channel. (E) Example cross sectional OCT image acquired from second channel. Images are cropped in depth to span 2.3mm. The full data set was acquired in 2.9 seconds.

Tables (1)

Tables Icon

Table 1. System Design Configurations and Performance Measures

Metrics