Abstract

We report a continuous-wave Nd:GdVO4 self-Raman laser generating wavelength-selectable output in the green-yellow spectral region. The laser combines stimulated Raman scattering (SRS) with intracavity second harmonic and sum-frequency generation (SHG/SFG) to enable “on-demand” operation at any one of three wavelengths, 532 nm, 559 nm and 586 nm, each with output power greater than 3.5 W. Using experimental and numerical modelling results, we show how the highly-interactive, simultaneous non-linear processes of SRS and SHG/SFG may be balanced to achieve stable, selectable multi-wavelength visible operation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Woodbury and W. K. Ng, “Ruby operation in the Near IR*,” Proc. Inst. Radio Eng. 50, 2367 (1962).
  2. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
    [CrossRef] [PubMed]
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  4. A. Glass, “Design considerations for Raman lasers,” IEEE J. Quantum Electron. 3(11), 516–520 (1967).
    [CrossRef]
  5. E. O. Ammann and J. Falk, “Stimulated Raman scattering at kHz pulse repetition rates,” Appl. Phys. Lett. 27(12), 662–664 (1975).
    [CrossRef]
  6. T. T. Basiev, and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Editor: Webb, C. E., ch. B1.7 (The Institute of Physics, London, Bristol, UK, 2003).
  7. P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
    [CrossRef]
  8. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [CrossRef]
  9. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
    [CrossRef] [PubMed]
  10. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express 16(26), 21958–21963 (2008).
    [CrossRef] [PubMed]
  11. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30(12), 1500–1502 (2005).
    [CrossRef] [PubMed]
  12. A. J. Lee, J. Lin, and H. M. Pask, “Near-infrared and orange-red emission from a continuous-wave, second-Stokes Raman Nd:GdVO4 laser,” Opt. Lett. 35(18), 3000–3002 (2010).
    [CrossRef] [PubMed]
  13. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [CrossRef]
  14. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO(4) at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  15. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
    [CrossRef] [PubMed]

2010

2008

2007

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO(4) at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

2005

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, “Discretely tunable, all-solid-state laser in the green, yellow, and red,” Opt. Lett. 30(12), 1500–1502 (2005).
[CrossRef] [PubMed]

2004

A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
[CrossRef] [PubMed]

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

1998

1975

E. O. Ammann and J. Falk, “Stimulated Raman scattering at kHz pulse repetition rates,” Appl. Phys. Lett. 27(12), 662–664 (1975).
[CrossRef]

1967

A. Glass, “Design considerations for Raman lasers,” IEEE J. Quantum Electron. 3(11), 516–520 (1967).
[CrossRef]

1962

E. J. Woodbury and W. K. Ng, “Ruby operation in the Near IR*,” Proc. Inst. Radio Eng. 50, 2367 (1962).

Ammann, E. O.

E. O. Ammann and J. Falk, “Stimulated Raman scattering at kHz pulse repetition rates,” Appl. Phys. Lett. 27(12), 662–664 (1975).
[CrossRef]

Basiev, T. T.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Brasseur, J. K.

Carlsten, J. L.

Cerný, P.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Dekker, P.

Falk, J.

E. O. Ammann and J. Falk, “Stimulated Raman scattering at kHz pulse repetition rates,” Appl. Phys. Lett. 27(12), 662–664 (1975).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Glass, A.

A. Glass, “Design considerations for Raman lasers,” IEEE J. Quantum Electron. 3(11), 516–520 (1967).
[CrossRef]

Grabtchikov, A. S.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Jelinkova, H.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Kiefer, W.

Lee, A. J.

Lin, J.

Lisinetskii, V. A.

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Maksimenka, R.

Mildren, R. P.

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby operation in the Near IR*,” Proc. Inst. Radio Eng. 50, 2367 (1962).

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Ogilvy, H.

Orlovich, V. A.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Pask, H. M.

Piper, J. A.

Repasky, K. S.

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Schmitt, M.

Spence, D. J.

Woodbury, E. J.

E. J. Woodbury and W. K. Ng, “Ruby operation in the Near IR*,” Proc. Inst. Radio Eng. 50, 2367 (1962).

Zverev, P. G.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Appl. Phys. Lett.

E. O. Ammann and J. Falk, “Stimulated Raman scattering at kHz pulse repetition rates,” Appl. Phys. Lett. 27(12), 662–664 (1975).
[CrossRef]

IEEE J. Quantum Electron.

A. Glass, “Design considerations for Raman lasers,” IEEE J. Quantum Electron. 3(11), 516–520 (1967).
[CrossRef]

IEEE Sel. Top. Quantum Electron.

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

J. Sel. Top. Quantum Electron.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Nature

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Inst. Radio Eng.

E. J. Woodbury and W. K. Ng, “Ruby operation in the Near IR*,” Proc. Inst. Radio Eng. 50, 2367 (1962).

Prog. Quantum Electron.

P. Cerný, H. Jelinkova, P. G. Zverev, and T. T. Basiev, “Solid state lasers with Raman frequency conversion,” Prog. Quantum Electron. 28(2), 113–143 (2004).
[CrossRef]

Other

T. T. Basiev, and R. C. Powell, “Solid-state Raman lasers,” in Handbook of Laser Technology and Applications Editor: Webb, C. E., ch. B1.7 (The Institute of Physics, London, Bristol, UK, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the laser and the non-linear processes/pathways for generating laser emission at 532 nm, 559 nm, 586 nm, 620 nm and 654 nm from an Nd:GdVO4 solid-state laser architecture.

Fig. 2
Fig. 2

Power scaling performance of the optimised, wavelength-selectable resonator.

Fig. 3
Fig. 3

Contour plots of the laser power output as a function of Raman and SHG/SFG coupling strength for (a) 586 nm; (b) 559 nm; and (c) 532 nm.

Tables (1)

Tables Icon

Table 1 Summary of resonator configuration and observed output properties for separately-optimised operation at 532 nm, 559 nm and 586 nm

Metrics