Abstract

This paper presents modeling and simulation of a silicon-based group IV semiconductor injection laser diode in which the active region has a multiple quantum well structure formed with Ge0.9Sn0.1 quantum wells separated by Ge0.75Si0.1Sn0.15 barriers. These alloy compositions were chosen to satisfy three conditions simultaneously: a direct band gap for Ge0.9Sn0.1, type-I band alignment between Ge0.9Sn0.1 and Ge0.75Si0.1Sn0.15, and a lattice match between wells and barriers. This match ensures that the entire structure can be grown strain free upon a relaxed Ge0.75Si0.1Sn0.15 buffer on a silicon substrate – a CMOS compatible process. Detailed analysis is performed for the type I band offsets, carrier lifetime, optical confinement, and modal gain. The carrier lifetime is found to be dominated by the spontaneous radiative process rather than the Auger process. The modal gain has a rather sensitive dependence on the number of quantum wells in the active region. The proposed laser is predicted to operate at 2.3 μm in the mid infrared at room temperature.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
    [CrossRef]
  2. R. A. Soref, J. Kouvetakis and J. Menendez, “Advances in SiGeSn/Ge technology,” Mater. Res. Soc. Symp. Proc., 958, 0958–L01–08 (2007).
  3. G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
    [CrossRef]
  4. J. Tolle, R. Roucka, V. D'Costa, J. Menendez, A. Chizmeshya, and J. Kouvetakis “Sn-based group-IV semiconductors on Si: new infrared materials and new templates for mismatched epitaxy,” Mater. Res. Soc. Symp. Proc.891, 0891–EE12–08 (2006).
  5. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength,” Opt. Express 17(14), 11246–11258 (2009).
    [CrossRef] [PubMed]
  6. Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
    [CrossRef]
  7. G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
    [CrossRef]
  8. R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991).
    [CrossRef]
  9. H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
    [CrossRef]
  10. M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
    [CrossRef] [PubMed]
  11. S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors, (John Wiley and Sons, England, 2005)
  12. V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
    [CrossRef]
  13. V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
    [CrossRef]
  14. J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989).
    [CrossRef] [PubMed]
  15. M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
    [CrossRef]
  16. G. P. Agrawal, and N. K. Dutta, Long-Wavelength Semiconductor Lasers, (Van Nostrand Reinhold Company Inc. New York, 1986).
  17. Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
    [CrossRef] [PubMed]

2010

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
[CrossRef]

2009

2008

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

2007

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

2006

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

1991

R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991).
[CrossRef]

1989

J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989).
[CrossRef] [PubMed]

1988

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[CrossRef] [PubMed]

1966

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[CrossRef]

Alonso, M. I.

J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989).
[CrossRef] [PubMed]

Bergstresser, T. K.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[CrossRef]

Birdwell, A. G.

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Canonico, M.

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Chang, G.-E.

Chang, S.-W.

Cheng, H. H.

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
[CrossRef]

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

Chizmeshya, A. V. G.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

Chuang, S. L.

Cohen, M. L.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[CrossRef]

Cook, C. S.

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

D’Costa, V. R.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

D'Costa, V. R.

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

de Guevara, H. P. L.

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

Fan, W.-J.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

Fang, Y.-Y.

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

Jaros, M.

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[CrossRef] [PubMed]

Khurgin, J. B.

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

Kouvetakis, J.

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Littler, C. L.

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Menendez, J.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Menéndez, J.

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

Navarro-Contreras, H.

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

Perry, C. H.

R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991).
[CrossRef]

Rodriguez, A. G.

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

Roucka, R.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

Soref, R. A.

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
[CrossRef]

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991).
[CrossRef]

Sun, G.

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
[CrossRef]

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

Tolle, J.

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

Vidal, M. A.

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

Wang, J.-W.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

Weber, J.

J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989).
[CrossRef] [PubMed]

Xie, J.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

Xu, Q.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

Zhu, Y.-H.

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

Zollner, S.

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Appl. Phys. Lett.

G. Sun, H. H. Cheng, J. Menendez, J. B. Khurgin, and R. A. Soref, “Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Appl. Phys. Lett. 90(25), 251105 (2007).
[CrossRef]

H. P. L. de Guevara, A. G. Rodriguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4 K,” Appl. Phys. Lett. 91(16), 161909 (2007).
[CrossRef]

J. Am. Chem. Soc.

Y.-Y. Fang, J. Xie, J. Tolle, R. Roucka, V. R. D’Costa, A. V. G. Chizmeshya, J. Menendez, and J. Kouvetakis, “Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics,” J. Am. Chem. Soc. 130(47), 16095–16102 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser,” J. Appl. Phys. 108(3), 033107 (2010).
[CrossRef]

R. A. Soref and C. H. Perry, “Predicted band gap of the new semiconductor SiGeSn,” J. Appl. Phys. 69(1), 539 (1991).
[CrossRef]

Y.-H. Zhu, Q. Xu, W.-J. Fan, and J.-W. Wang, “Theoretical gain of strained GeSn0.2/Ge1-x-y’SixSny’ quantum well laser,” J. Appl. Phys. 107(7), 073108 (2010).
[CrossRef]

Opt. Express

Phys. Rev.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[CrossRef]

Phys. Rev. B

V. R. D'Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menendez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter

J. Weber and M. I. Alonso, “Near-band-gap photoluminescence of Si-Ge alloys,” Phys. Rev. B Condens. Matter 40(8), 5683–5693 (1989).
[CrossRef] [PubMed]

M. Jaros, “Simple analytic model for heterojunction band offsets,” Phys. Rev. B Condens. Matter 37(12), 7112–7114 (1988).
[CrossRef] [PubMed]

Solid State Commun.

V. R. D'Costa, C. S. Cook, J. Menendez, J. Tolle, J. Kouvetakis, and S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138(6), 309–313 (2006).
[CrossRef]

Thin Solid Films

V. R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films 518(9), 2531–2537 (2010).
[CrossRef]

Other

R. A. Soref, J. Kouvetakis and J. Menendez, “Advances in SiGeSn/Ge technology,” Mater. Res. Soc. Symp. Proc., 958, 0958–L01–08 (2007).

G. P. Agrawal, and N. K. Dutta, Long-Wavelength Semiconductor Lasers, (Van Nostrand Reinhold Company Inc. New York, 1986).

J. Tolle, R. Roucka, V. D'Costa, J. Menendez, A. Chizmeshya, and J. Kouvetakis “Sn-based group-IV semiconductors on Si: new infrared materials and new templates for mismatched epitaxy,” Mater. Res. Soc. Symp. Proc.891, 0891–EE12–08 (2006).

S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors, (John Wiley and Sons, England, 2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Band gaps of Ge1-zSnz at L, Γ, and X vs. Sn composition z, and (b) Γ-point band alignment between lattice matched Ge1- x - y Si x Sn y and Ge0.9Sn0.1 vs. the Sn composition y.

Fig. 2
Fig. 2

Illustration of the GeSn/GeSiSn QW laser device on a lattice matched SiGeSn relaxed buffer upon a Si or SOI substrate. The device’s band alignment is also shown. This elongated mesa forms a strip channel waveguide.

Fig. 3
Fig. 3

Radiative and Auger recombination lifetime as a function of temperature for the carrier density of 2 × 10 12 /cm2 in the Ge0.9Sn0.1 /Ge0.75Si0.1Sn0.15 MQW active region.

Fig. 4
Fig. 4

Optical confinement factor for the fundamental TE mode as a function of the number of QWs in the active region of a Ge0.9Sn0.1 /Ge0.75Si0.1Sn0.15 QW laser having Ge0.75Si0.1Sn0.15 cladding layers.

Fig. 5
Fig. 5

Modal gain as a function of the injection current density at K for the Ge0.9Sn0.1 /Ge0.75Si0.1Sn0.15 QW laser with different number of QWs.

Tables (1)

Tables Icon

Table 1 Band parameters at various valleys used in the band alignment calculation [1214]

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E v , a v ( Ge 1 x y Si x Sn y ) = 0.48 x + 0.69 y .
Δ S O ( Ge 1 x y Si x Sn y ) = 0.295 ( 1 x y ) + 0.043 x + 0.800 y .
E v ( Ge 1 x y Si x Sn y ) = E v , a v ( Ge 1 x y Si x Sn y ) + Δ S O ( Ge 1 x y Si x Sn y ) 3 .
E ( Ge 1 x y Si x Sn y ) = E Ge ( 1 x y ) + E Si x + E Sn y b GeSi ( 1 x y ) x                 b GeSn ( 1 x y ) y b SiSn x y
E X ( Ge 1 x Si x ) = 0.931 + 0.018 x + 0.206 x 2
a ( Ge 1 x y Si x Sn y ) = a Ge ( 1 x y ) + a Si x + a Sn y
R s p , e h h = n ¯ e 2 m r | M b | 2 π 2 m 0 2 ε 0 4 c 3 d E q E f c ( E e ) f v ( E h h ) d E
f c ( E e ) = [ 1 + exp ( E e E f c k B T ) ] 1 , f v ( E h h ) = [ 1 + exp ( E f v E h h k B T ) ] 1 ,
E e = m r m e ( E E q ) , E h h = m r m h h ( E E q )
m r = m e m h h m e + m h h
R r a d = R s p , e h h + R s p , e l h
g = e 2 m r | M b | 2 m 0 2 ε 0 c n ¯ E d w [ f c ( E e ) + f v ( E h h ) 1 ] ,

Metrics