Abstract

In this paper we demonstrate a compact current sensor using the optic fiber micro wire, based on the idea of interferometrically measuring the thermally induced optical phase shifts as a result of heat produced due to the flow of electric current over short transit lengths. A responsivity of 1.28 x 10-4 rad/I2 at 50Hz of current signal has been shown, with capability of measuring alternating current signals up to 500Hz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [CrossRef]
  2. L. Tong, “Brief introduction to optical microfibers and nanofibers,” Front. Optoelectron. China 3(1), 54–60 (2010).
    [CrossRef]
  3. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [CrossRef] [PubMed]
  4. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  5. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
    [CrossRef] [PubMed]
  6. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  7. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  8. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
    [CrossRef]
  9. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  10. C.-Y. Chao and L. Jay Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [CrossRef]
  11. N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
    [CrossRef]
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  14. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
    [CrossRef] [PubMed]
  15. F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
    [CrossRef]
  16. N. Lou, R. Jha, J. L. Domínguez-Juárez, V. Finazzi, J. Villatoro, G. Badenes, and V. Pruneri, “Embedded optical micro/nano-fibers for stable devices,” Opt. Lett. 35(4), 571–573 (2010).
    [CrossRef] [PubMed]
  17. Y. Jung, S. R. Han, S. Kim, U. C. Paek, and K. Oh, “Versatile control of geometric birefringence in elliptical hollow optical fiber,” Opt. Lett. 31(18), 2681–2683 (2006).
    [CrossRef] [PubMed]
  18. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett. 35(3), 378–380 (2010).
    [CrossRef] [PubMed]
  19. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [CrossRef]
  20. R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [CrossRef]
  21. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
    [CrossRef]
  22. W.-W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42(4), 896–897 (2003).
    [CrossRef]
  23. G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
    [CrossRef]
  24. K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).
  25. D. A. Jackson, “Recent progress in monomode fibre-optic sensors,” Meas. Sci. Technol. 5(6), 621–638 (1994).
    [CrossRef]

2010 (4)

2008 (5)

F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (3)

2004 (1)

2003 (3)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

W.-W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42(4), 896–897 (2003).
[CrossRef]

1994 (1)

D. A. Jackson, “Recent progress in monomode fibre-optic sensors,” Meas. Sci. Technol. 5(6), 621–638 (1994).
[CrossRef]

1989 (1)

R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

1986 (1)

K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).

1981 (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
[CrossRef]

1980 (1)

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Badenes, G.

Böhm, K.

K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).

Brambilla, G.

Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett. 35(3), 378–380 (2010).
[CrossRef] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

Broderick, N. G. R.

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

Chao, C.-Y.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
[CrossRef]

Domínguez-Juárez, J. L.

Finazzi, V.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
[CrossRef]

Gu, F.

Han, S. R.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Jackson, D. A.

D. A. Jackson, “Recent progress in monomode fibre-optic sensors,” Meas. Sci. Technol. 5(6), 621–638 (1994).
[CrossRef]

Jay Guo, L.

Jha, R.

Jung, Y.

Kim, S.

Laming, R. I.

R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Lin, W.-W.

W.-W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42(4), 896–897 (2003).
[CrossRef]

Lou, J.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lou, N.

Mansuripur, M.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Monzón-Hernández, D.

Morrison, R. J.

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Oh, K.

Paek, U. C.

Payne, D. N.

R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

Persechini, D. I.

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Petermann, K.

K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).

Petrovich, M. N.

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Pruneri, V.

Richardson, D. J.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tangonan, G. L.

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Tong, L.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
[CrossRef]

Villatoro, J.

Vukovic, N.

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

Wysocki, J. A.

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Xu, F.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

Ye, Z.

Yin, X.

Zhang, L.

Appl. Phys. Lett. (1)

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92(10), 101126 (2008).
[CrossRef]

Electron. Lett. (2)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Interferometric current sensors using optical fibres,” Electron. Lett. 17(15), 523–525 (1981).
[CrossRef]

G. L. Tangonan, D. I. Persechini, R. J. Morrison, and J. A. Wysocki, “Current sensing with metal coated multimode optic fibers,” Electron. Lett. 16(25-26), 958–959 (1980).
[CrossRef]

Front. Optoelectron. China (1)

L. Tong, “Brief introduction to optical microfibers and nanofibers,” Front. Optoelectron. China 3(1), 54–60 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Vukovic, N. G. R. Broderick, M. N. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical tapers,” IEEE Photon. Technol. Lett. 20(14), 1264–1266 (2008).
[CrossRef]

J. Lightwave Technol. (2)

C.-Y. Chao and L. Jay Guo, “Design and Optimization of Microring Resonators in Biochemical Sensing Applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[CrossRef]

R. I. Laming and D. N. Payne, “Electric Current Sensors Employing Spun Highly Birefringent Optical Fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Xu and G. Brambilla, “Preservation of Micro-Optical Fibers by Embedding,” Jpn. J. Appl. Phys. 47(8), 6675–6677 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

D. A. Jackson, “Recent progress in monomode fibre-optic sensors,” Meas. Sci. Technol. 5(6), 621–638 (1994).
[CrossRef]

Nano Lett. (1)

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Eng. (1)

W.-W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42(4), 896–897 (2003).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

K. Böhm and K. Petermann, “Signal processing schemes for the fiber-optic gyroscope,” Proc. SPIE 719, 36–44 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental results on the fabrication of current sensor. Transmission spectra were recorded before tapering, after tapering and after packaging. (b) Photograph of the packaged OFM coil on the copper wire.

Fig. 2
Fig. 2

Diagram of the experimental set-up used to test the sensor. LD stands for laser diode, PZT for piezoelectric transducer, FRM for Faraday rotating mirror, and D for detector.

Fig. 3
Fig. 3

Output of the current sensor with 90A@50Hz input. The top waveform represents the 50Hz input, while the bottom one is the sensor output.

Fig. 4
Fig. 4

Amplitude of AC phase measured as a function of square of alternating electric current passing through the copper wire at frequency 50Hz

Fig. 5
Fig. 5

AC response ( rad/I 2 ) of interferometer as a function of driving frequency for heating current sensor

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q e = I 0 2 R cos 2 ( ω t ) = 1 2 I 0 2 R + 1 2 I 0 2 R cos ( 2 ω t )
Δ T = Q e Q T m C
d ϕ d T = 2 π λ ( n d L d T + L d n d T )
ϕ ( t ) = I 0 2 R 2 m C 2 π λ ( n d L d T + L d n d T ) cos ( 2 ω t )

Metrics