Abstract

We introduce a new kind of light field to improve and simplify the trapping process of axially displaced particles. To this end we employ a light field with an axially expanded intensity distribution, which at the same time enables stable axial trapping. We present simulations of the axial intensity distribution of the novel trapping field and first experimental results, which demonstrate the improvement of the reliability of the axial trapping process. The method can be used to automate trapping of particles that are located outside of the focal plane of the microscope.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  2. S. Chu, "Laser manipulation of atoms and particles," Science 253, 861-866 (1991).
    [CrossRef] [PubMed]
  3. A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
    [CrossRef] [PubMed]
  4. Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).
  5. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
    [CrossRef]
  6. M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  7. J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  8. S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
    [PubMed]
  9. T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
    [CrossRef]
  10. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  11. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
    [CrossRef]
  12. N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
    [CrossRef]
  13. D. W. Zhang, and X.-C. Yuan, "Optical doughnut for optical tweezers," Opt. Lett. 28, 740-742 (2003).
    [CrossRef] [PubMed]
  14. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
    [CrossRef]
  15. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, "Optical mirror trap with a large field of view," Opt. Express 17, 19414-19423 (2009).
    [CrossRef] [PubMed]
  16. J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
    [CrossRef]
  17. M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, "Fast hologram computation and aberration control for holographic tweezers," Proc. SPIE 5930 (2005).
    [CrossRef]
  18. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, "Aberration correction in holographic optical tweezers," Opt. Express 14, 4169-4174 (2006).
    [CrossRef] [PubMed]
  19. A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008).
    [CrossRef]
  20. J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
    [CrossRef]
  21. K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
    [CrossRef]
  22. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
    [CrossRef] [PubMed]
  23. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
    [CrossRef] [PubMed]
  24. F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
    [CrossRef]
  25. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
    [CrossRef]
  26. J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
    [CrossRef]
  27. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
    [CrossRef] [PubMed]
  28. D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
    [CrossRef] [PubMed]
  29. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005).
    [CrossRef] [PubMed]

2009 (3)

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, "Optical mirror trap with a large field of view," Opt. Express 17, 19414-19423 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008).
[CrossRef]

2006 (2)

2005 (1)

2004 (3)

J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
[CrossRef]

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef]

K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef]

2003 (3)

2002 (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

2001 (4)

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

1999 (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

1996 (2)

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

1995 (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

1992 (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1991 (1)

S. Chu, "Laser manipulation of atoms and particles," Science 253, 861-866 (1991).
[CrossRef] [PubMed]

1986 (1)

Allen, L.

N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Arlt, J.

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

Ashkin, A.

Bernet, S.

Bjorkholm, J. E.

Chambers, C.

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

Chu, S.

Clark, R. L.

Cole, D. G.

Cooper, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

DiLeonardo, R.

Dziedzic, J. M.

Fürhapter, S.

Garces-Chavez, V.

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

Gauthier, R. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

Gibson, G.

Glückstad, J.

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef]

Grier, D.

K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Grover, C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

Grover, S. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

Haist, T.

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
[CrossRef]

M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
[PubMed]

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

He, L.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Hermerschmidt, A.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Jesacher, A.

Jonás, A.

A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008).
[CrossRef]

Kasza, K.

K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef]

Knight, A. E.

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef]

Leach, J.

Liesener, J.

J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

McGloin, D.

D. McGloin, V. Garces-Chavez, and K. Dholakia, "Interfering Bessel beams for optical micromanipulation," Opt. Lett. 28, 657-659 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Miyamoto, Y.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Molloy, J.

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

Mutoh, K.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Osten, W.

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
[PubMed]

Padgett, M.

N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Padgett, M. J.

Pitzek, M.

Reicherter, M.

J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
[CrossRef]

M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Ritsch-Marte, M.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Schaal, F.

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

Simpson, N. B.

N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Skirtach, A. G.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

Steiger, R.

Sumi, S.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Suzuki, S.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Thalhammer, G.

Tiziani, H.

J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
[CrossRef]

M. Reicherter, T. Haist, E. Wagemann, and H. Tiziani, "Optical particle trapping with computer-generated holograms written on a liquid-crystal display," Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Veigel, C.

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

Wagemann, E.

Warber, M.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
[PubMed]

Wright, E.

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Wulff, K. D.

Yataga, T.

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

Yuan, X.-C.

Zemánek, P.

A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008).
[CrossRef]

Zhang, D. W.

Zwick, S.

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
[CrossRef]

S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
[PubMed]

Appl. Opt. (1)

S. Zwick, T. Haist, M. Warber, and W. Osten, "Dynamic holography using pixilated light modulators," Appl. Opt. (to be published).
[PubMed]

Biophys. J. (1)

A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

Electrophoresis (1)

A. Jonás, and P. Zemánek, "Light at work: the use of optical forces for particle manipulation, sorting, and analysis," Electrophoresis 29(24), 4813-4851 (2008).
[CrossRef]

J. Biomed. Opt. (1)

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14-22 (2001).
[CrossRef] [PubMed]

J. Europ. Opt. Soc. Rap. Public. (1)

F. Schaal, M. Warber, S. Zwick, T. Haist, and W. Osten, "Marker-free cell discrimination by holographic optical tweezers," J. Europ. Opt. Soc. Rap. Public. 4, 09028 (2009).
[CrossRef]

J. Holography Speckle (1)

T. Haist, S. Zwick, M. Warber, and W. Osten, "Spatial light modulators-versatile tools for holography," J. Holography Speckle 3, 125-136 (2006).
[CrossRef]

J. Mod. Opt. (2)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

N. B. Simpson, L. Allen, and M. Padgett, "Optical tweezers and optical spanners with Laguerre-Gaussian modes," J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, and A. Hermerschmidt, "andW. Osten, "Holographic twin traps," J. Opt. A, Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Nat. Mater. (1)

J. Glückstad, "Sorting particles with light," Nat. Mater. 3, 9-10 (2004).
[CrossRef]

Nature (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. E. Curtis, B. A. Koss, and D. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001).
[CrossRef]

J. Liesener, M. Reicherter, and H. Tiziani, "Determination and compensation of aberrations using SLMs," Opt. Commun. 233, 161-166 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, "Nonmechanical optical manipulation of microparticle using spatial light modulator," Opt. Rev. 6, 24-27 (1999).
[CrossRef]

Phys. Rev. A (1)

J. Arlt, K. Dholakia, J. Soneson, and E. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

K. Ladavac, K. Kasza, and D. Grier, "Sorting by periodic potential energy landscapes: optical fractionation," Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 010901 (2004).
[CrossRef]

Proc. SPIE (1)

Y. Hayasaki, S. Sumi, K. Mutoh, S. Suzuki, M. Itoh, T. Yataga, and N. Nishida, "Optical manipulation of microparticles using diffractive optical elements," Proc. SPIE 27778, 229 (1996).

Prog. Biophys. Mol. Biol. (1)

A. E. Knight, C. Veigel, C. Chambers, and J. Molloy, "Analysis of single-molecule mechanical recordings: application to acto-myosin interactions," Prog. Biophys. Mol. Biol. 77, 45-72 (2001).
[CrossRef] [PubMed]

Science (1)

S. Chu, "Laser manipulation of atoms and particles," Science 253, 861-866 (1991).
[CrossRef] [PubMed]

Other (1)

M. Reicherter, T. Haist, S. Zwick, A. Burla, L. Seifert, and W. Osten, "Fast hologram computation and aberration control for holographic tweezers," Proc. SPIE 5930 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(Color online) Principle setup of holographic optical tweezers. An expanded laser illuminates a spatial light modulator (SLM) located in the Fourier domain of the object. A hologram is displayed by the SLM. The modulated wave front is coupled into a microscope using a Kepler telescope (lenses L2 and L3) and reconstructed in the object plane, which is imaged on a CCD.

Fig. 2.
Fig. 2.

(Color online) Trapping of an object which is positioned outside of the trapping plane. Within the trapping region the object can be pushed into the trapping plane by the help of the scattering force. If the distance d of the particle to the trap is too far or respectively the intensity is too low, the object is not trapped.

Fig. 3.
Fig. 3.

(Color online) Generation of axially expanded light fields using an axicon in the Fourier plane of the object.

Fig. 4.
Fig. 4.

(Color online) Amplitude (left, logarithmic scale) and intensity distribution (right) of the beam profiles generated with different axicons. Propagation direction of the light field is from negative to positive Z. The intensity distribution for ϕmax = 0λ corresponds to a conventional trap using a diffraction limited focus of a homogenous beam. With increasing maximum axicon phase shift ϕmax , the intensity is distributed over a larger axial region. Additionally, defocus is induced, which has to be balanced with a superimposed corrective defocus term on the hologram in order to simplify monitoring.

Fig. 5.
Fig. 5.

(Color online) Axial intensity distribution generated with different maximum axicon phase shifts ϕmax . The maximum intensity decreases with the maximum axicon phase shift, while the intensity is distributed over a large axial region. The defocus generated by the axicon has been balanced.

Fig. 6.
Fig. 6.

Decrease of the maximum axial intensity with maximum axicon phase shift ϕmax .

Fig. 7.
Fig. 7.

Axial extent of the intensity distribution depending on the maximum axicon phase shift ϕmax . The axial extent has been defined as a decay of the intensity to 10% of the maximum intensity.

Fig. 8.
Fig. 8.

Trapping experiments with the novel approach:(a) particles on object slide, (b) particles 20 µm defocused, (c) particles guided along the optical axis and axially and laterally trapped using three axially expanded light fields.

Fig. 9.
Fig. 9.

Duration of the trapping process of an 3 µm-object being positioned at different distances d from the trap. The duration and the repeatability (given by the error bars) of the trapping process can be improved using an axially expanded light field. The optimal maximum phase shift ϕmax depends on the distance d.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z max = ω 0 ( n 1 ) γ ,
ϕ max = a · n = 1 2 tan γ · D axicon · n ,

Metrics