Abstract

Fundamental and practical performance limits of continuously tunable optical sources using extra-cavity mixing process are examined. While the parametric process cannot overcome the fundamental tunable limit set by the uncertainty principle, it offers a new path in overcoming the practical performance limits associated with conventional tunable lasers. Specifically, cavity reconfiguration speed is recognized as a limiting process in all tunable lasers that cannot be circumvented by any conventional approach. Recognizing this barrier, we introduce and experimentally demonstrate a decoupling concept that relies on extra-cavity mixing to increase the tuning speed and range of any tunable laser source.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, ed., Tunable Laser Handbook, Academic Press, (1995).
  2. C. Ye, Tunable External Cavity Diode Lasers (World Scientific Publishing, 2004).
  3. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “L., C. W. Coldren, “Tunable semiconductor lasers: a tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [CrossRef]
  4. S. Sanders, “Wavelength-Agile Lasers,” Opt. Photon. News 16(5), 36–41 (2005).
    [CrossRef]
  5. B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).
  6. P. W. Milonni, and J. H. Eberly, Laser Physics (Wiley, 2010).
    [PubMed]
  7. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [CrossRef]
  8. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
    [CrossRef]
  9. D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibres,” Electron. Lett. 18(12), 504–506 (1982).
    [CrossRef]
  10. A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).
  11. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, 2008).
  12. K. Petermann, Diode Modulation and Noise (Kluwer Academic Publishers, 1988).

2005

S. Sanders, “Wavelength-Agile Lasers,” Opt. Photon. News 16(5), 36–41 (2005).
[CrossRef]

2004

2002

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

1993

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

1992

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

1982

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibres,” Electron. Lett. 18(12), 504–506 (1982).
[CrossRef]

Akulova, Y.

Barton, J. S.

Chraplyvy, A. R.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Coldren, C. W.

Coldren, L. A.

Cotter, D.

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibres,” Electron. Lett. 18(12), 504–506 (1982).
[CrossRef]

Fish, G. A.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Johansson, L.

McKinstrie, C. J.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Nozawa, T.

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

Radic, S.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Sanders, S.

S. Sanders, “Wavelength-Agile Lasers,” Opt. Photon. News 16(5), 36–41 (2005).
[CrossRef]

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Tsun, T.-O.

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

Wada, A.

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

Yamauchi, R.

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

E

A. Wada, T. Nozawa, T.-O. Tsun, and R. Yamauchi, ““Suppression of stimulated Brillouin scattering by intentionally induced periodic residual –strain in single-mode optical fibers,” IEICE Trans. Commun,” E 76-B, 345–351 (1993).

Electron. Lett.

D. Cotter, “Transient stimulated Brillouin scattering in long single-mode fibres,” Electron. Lett. 18(12), 504–506 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

J. Lightwave Technol.

Opt. Photon. News

S. Sanders, “Wavelength-Agile Lasers,” Opt. Photon. News 16(5), 36–41 (2005).
[CrossRef]

Other

B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer, 2008).

P. W. Milonni, and J. H. Eberly, Laser Physics (Wiley, 2010).
[PubMed]

F. J. Duarte, ed., Tunable Laser Handbook, Academic Press, (1995).

C. Ye, Tunable External Cavity Diode Lasers (World Scientific Publishing, 2004).

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, 2008).

K. Petermann, Diode Modulation and Noise (Kluwer Academic Publishers, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Four-wave mixing between a the pump (ωp) and a seed (ωs) results in generation of an idler (ωi) via frequency degenerate process (2ωP→ ωs + ωI); (b) Conservation of energy: pump shifted by Δω results in 2Δω idler shift.

Fig. 2
Fig. 2

CAST enhancement through (a) higher-order mixing and (b) cascaded mixing.

Fig. 3
Fig. 3

(a) Two pump mixing process uses two fixed pump frequencies (ωP1 and ωP2) in order to replicate input seed (ωS) to three new frequencies (ωI1, ωI2 and ωI3); (b) Seed tone frequency shift (Δω) is quadrupled by forcing all four frequencies to be swept in unison; (c) Pump frequency shift of Δω results in total 5Δω frequency shift. Additional scan-multiplying combinations can be constructed by selecting, seed-, pump-only or seed-pump-pump frequency tuning configurations.

Fig. 4
Fig. 4

Experimental setup for CAST through higher order mixing. Inset shows the dispersion profile of the HNLF.

Fig. 5
Fig. 5

(a) Input (red dotted line) and output (blue solid line) spectra of the parametric mixer; (b) Temporal traces at the interleaver output of the pump and the idlers after 4-nm band-pass filtering.

Fig. 6
Fig. 6

(a) Retrieved phase noise on the pump source and the generated idlers, represented in time domain; (b) Reconstructed spectra of the pump and idlers.

Fig. 7
Fig. 7

Experimental setup for CAST through cascaded mixing. Insets show the pictorial representations of the spectral components at the input and output of each stage.

Fig. 8
Fig. 8

(a) Input (dotted lines) and output (solid lines) spectra of the parametric mixer stages; (b) Temporal traces of the labeled waves after the interleaver.

Fig. 9
Fig. 9

(a) Reconstructed spectra of the original pump source and the idlers generated in stage 1 (idler 1) and stage 2 (idler 2). (b) Expanded view of the fitted Lorentzian lineshapes, with their respective FWHM labeled.

Fig. A1
Fig. A1

(a) Heterodyne signal between the wavelength-swept pump source and a static laser. Inset shows a zoom-in view of the waveform around t = 0 with time-span of 600 ns; (b) Retrieved instantaneous frequency of the pump source, with the retrieved phase shown in the inset. The solid line in the frequency-time plot corresponds to the frequency extracted by polynomial fitting the retrieved phase followed by a first-order derivative operation.

Fig. A2
Fig. A2

(a) Temporal phase noise evolution retrieved after the polynomial fit. (b) Power spectrum of the reconstructed field (blue) and the Lorentzian lineshape fit (red).

Fig. A3
Fig. A3

Power spectrum of the reconstructed idler (blue) overlaid with the measured spectrum of the seed laser (red). Inset shows a zoom-in view of the spectra with 1 GHz span.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F O M = Δ ω T Δ τ δ ω .
ω i2 =  2 ( ω i +  2 Δ ω p )     ( ω p +   Δ ω p )   =   ( 2 ω i   ω p )   +  3 Δ ω p .
p ( t ) = P LUT ( t ) + P Ref ( t ) + 2 P LUT ( t ) P Ref ( t ) Re { exp [ j ( ϕ LUT ( t ) ϕ Ref ( t ) ) ] } .
A R p AC ( t ) = 2 P LUT P Ref Re { exp [ j ( ϕ LUT ( t ) ϕ Ref ) ] } , A I H [ p AC ( t ) ] = 2 P LUT P Ref Im { exp [ j ( ϕ LUT ( t ) ϕ Ref ) ] } .

Metrics