Abstract

We report on a picosecond pulse source delivering near transform-limited pulses in the 1.55 µm wavelength region, based on an optically pumped InP-based mode locked Vertical External Cavity Surface Emitting Laser (VECSEL). The cavity combines two semiconductor elements, a gain structure which includes six strained InGaAlAs quantum wells and a hybrid metal-metamorphic Bragg bottom mirror bonded onto a CVD diamond substrate, and a single quantum well GaInNAs SEmiconductor Saturable Absorber Mirror (SESAM). The laser operates at a repetition frequency of 2 GHz and emits near-transform-limited 1.7 ps pulses with an average output power of 15 mW at room temperature, using 1.7 W pump power at 980nm. The RF line width of the free running laser has been measured to be less than 1 kHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
    [CrossRef]
  2. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
    [CrossRef]
  3. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
    [CrossRef]
  4. S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
    [CrossRef]
  5. H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, and S. Marcinkevičius, “Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber,” Opt. Lett. 30(20), 2793–2795 (2005).
    [CrossRef] [PubMed]
  6. E. J. Saarinen, J. Puustinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, “Power-scalable 1.57 microm mode-locked semiconductor disk laser using wafer fusion,” Opt. Lett. 34(20), 3139–3141 (2009).
    [CrossRef] [PubMed]
  7. R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
    [CrossRef]
  8. E. J. Saarinen, R. Herda, and O. G. Okhotnikov, “Dynamics of pulse formation in mode-locked semiconductor disk lasers,” J. Opt. Soc. Am. B 24(11), 2784–2790 (2007).
    [CrossRef]
  9. M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
    [CrossRef] [PubMed]
  10. J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
    [CrossRef]
  11. J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
    [CrossRef]
  12. M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
    [CrossRef]
  13. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985), Vol. 1.
  14. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
    [CrossRef]
  15. D. J. Maas, B. Rudin, A. R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008).
    [CrossRef] [PubMed]
  16. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).
  17. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
    [CrossRef]
  18. E. Cojocaru, T. Julea, and N. Herisanu, “Stability and astigmatic compensation analysis of five- and six- or seven-mirror cavities for mode-locked dye lasers,” Appl. Opt. 28(13), 2577–2580 (1989).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

D. J. Maas, B. Rudin, A. R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008).
[CrossRef] [PubMed]

2007 (2)

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

E. J. Saarinen, R. Herda, and O. G. Okhotnikov, “Dynamics of pulse formation in mode-locked semiconductor disk lasers,” J. Opt. Soc. Am. B 24(11), 2784–2790 (2007).
[CrossRef]

2006 (1)

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

2005 (2)

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, and S. Marcinkevičius, “Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber,” Opt. Lett. 30(20), 2793–2795 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

2003 (1)

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

2002 (1)

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

2000 (2)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

1999 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

1989 (1)

Bellancourt, A. R.

Bouchoule, S.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

Caliman, A.

Cojocaru, E.

Decobert, J.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Dû, M. L.

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Garnache, A.

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

Golling, M.

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
[CrossRef] [PubMed]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

Haring, R.

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Harmand, J. C.

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Harmand, J.-C.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Herda, R.

Herisanu, N.

Hoffmann, M.

Hoogland, S.

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Ippen, E. P.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

Iwaniuk, D.

Julea, T.

Kapon, E.

Kärtner, F. X.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

Keller, U.

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, “Experimental verification of soliton-like pulse-shaping mechanisms in passively mode-locked VECSELs,” Opt. Express 18(10), 10143–10153 (2010).
[CrossRef] [PubMed]

D. J. Maas, B. Rudin, A. R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008).
[CrossRef] [PubMed]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Khadour, A.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

Lafosse, X.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Lagay, N.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Largeau, L.

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Larsson, A.

Leroy, L.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Lindberg, H.

Maas, D. J.

Maas, D. J. H. C.

Marchese, S. V.

Marcinkevicius, S.

Mauguin, O.

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Mereuta, A.

Miard, A.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

Morier-Genoud, F.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Okhotnikov, O. G.

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Oudar, J. L.

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Oudar, J.-L.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Paldus, B.

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

Paschotta, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Puustinen, J.

Roberts, J. S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Rudin, B.

Saarinen, E. J.

Sadeghi, M.

Sagnes, I.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

Schibli, T. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

Sieber, O. D.

Sirbu, A.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

Spühler, G. J.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

Strassner, M.

Südmeyer, T.

Thoen, E. R.

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

Tourrenc, J. P.

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

Tourrenc, J.-P.

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Travers, L.

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Tropper, A. C.

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Wang, S.

Weingarten, K. J.

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

Westlund, M.

Wittwer, V. J.

Appl. Opt. (1)

Appl. Phys. B (4)

T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption,” Appl. Phys. B 70, S41–S49 (2000).

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

R. Paschotta, R. Haring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75(4-5), 445–451 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers, and J. L. Oudar, “Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate,” Appl. Phys. Lett. 88, 201110 (2006).
[CrossRef]

Electron. Lett. (2)

J. P. Tourrenc, S. Bouchoule, A. Khadour, J. Decobert, A. Miard, J. C. Harmand, and J. L. Oudar, “High power single-longitudinal-mode OP-VECSEL at 1.55 µm with hybrid metal-metamorphic Bragg mirror,” Electron. Lett. 43(14), 754–755 (2007).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, B. Paldus, K. J. Weingarten, R. Grange, M. Haiml, R. Paschotta, U. Keller, and A. C. Tropper, “Picosecond pulse generation with 1.5 µm passively modelocked surface-emitting semiconductor laser,” Electron. Lett. 39(11), 846–847 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Haring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (<0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J.-P. Tourrenc, S. Bouchoule, A. Khadour, J.-C. Harmand, A. Miard, J. Decobert, N. Lagay, X. Lafosse, I. Sagnes, L. Leroy, and J.-L. Oudar, “Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal–metamorphic mirror for single-mode high power operation,” Opt. Quantum Electron. 40(2-4), 155–165 (2008).
[CrossRef]

Other (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a). The layout of the gain structure presents the refractive index structure (bleu), and calculated standing wave intensity pattern for λ=1550 nm (red), (b). Typical measured reflectivity spectrum of the gain structure at room temperature. (c). Calculated GDD.

Fig. 2
Fig. 2

VECSEL cavity setup. The gain sample is bonded to the copper mount with a heat conductive paste, this is in turn attached to the copper block which is temperature controlled by a Peltier device. The back plate of the device can be water-cooled for temperatures below 15°C.

Fig. 3
Fig. 3

Continuous-wave emitted power versus incident pump power at different temperatures, in the plane-concave cavity configuration, using a 99% HR dielectric mirror. Water cooling of the heat sink was used for T ≤ 15°C, while a TE cooler alone (no water flow) was sufficient above 15°C. The insets show: the threshold pump power as a function of heatsink temperature, and output beam profile measured with a CCD camera at the output power of 120 mW at room temperature.

Fig. 4
Fig. 4

(a) Optical spectra observed at different heat-sink temperatures. Pump power at 980 nm is kept at the value of 1.7 W for all measurements. The center wavelength red shift is ~0.2 nm⋅°C-1. (b) Optical spectra observed at different pump powers. Heat-sink temperature is fixed to 0°C for all measurements. The centre wavelength red shift is ~2.9 nm⋅W-1.

Fig. 5
Fig. 5

Layout of the SESAM device (left) and calculated spectral properties (right) for three different cases: (a). antiresonant structure, (b). antiresonant structure with SiONx AR coating, (c). quasi-resonant structure. On the left part, the blue line represents the refractive index variations, and the red one is the calculated standing wave intensity pattern for λ=1550 nm . On the right-hand side are displayed the calculated wavelength dependence of the reflectivity (blue line) and group delay dispersion (red line).

Fig. 6
Fig. 6

Nonlinear reflectivity data for a representative sample. Blue circles: experimental data, full red line: fit-function including nonlinear induced absorption for: (a). antiresonant structure, (b). antiresonant structure with AR coating, (c). quasi-resonant structure.

Fig. 7
Fig. 7

Schematic drawing of the 2-GHz cavity when viewed from the top, the distance between the SESAM and the folding mirror is called ds.

Fig. 8
Fig. 8

Calculated values of the waists of the Gaussian mode on the SESAM (Ws), on the ½VCSEL (Wv), and the ratio between the two waists as a function of the distance between the SESAM and the folding mirror, for different cavity lengths, in the sagittal plane (on the right) and the tangential plane (on the left). The distance between the ½ VCSEL and the output coupler is fixed to 25 mm in all the calculations. The hatched areas are the region of laser operation.

Fig. 9
Fig. 9

Series of autocorrelation traces of pulses (left hand side), optical spectrum (in the middle) and RF spectrum of the laser output measured with a fast photodiode (right hand side), obtained from VECSEL at different settings of the cavity length, with a decreasing beam size on the SESAM surface.

Fig. 10
Fig. 10

RF spectrum of a fast-photodiode signal: (a). 50-GHz span and 30-kHz resolution bandwidth, the harmonics could be seen till the bandwidth limit of the fast photo diode (50GHz). (b). 2-GHz span and 30-kHz resolution bandwidth, (c). a view with a 30-Hz resolution bandwidth for the fundamental (2GHz) with a Lorentzian fit (red line) (d). first harmonic at 4GHz.

Fig. 11
Fig. 11

Characterization of optical pulses: (a). Autocorrelation trace of the mode-locked pulses (blue points), the red solid curve represents a fit to the data assuming a hyperbolic secant autocorrelation profile with 2.3 ps FWHM at 0°C, corresponding to a pulse duration of 1.5 ps FWHM. (b). Measured spectral profile of the mode-locked laser output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( F ) = R ns ln [ 1 + R lin R ns ( e F F Sat 1 ) ] F F Sat e F F 2 .

Metrics