Abstract

Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  3. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
    [CrossRef] [PubMed]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  5. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]
  6. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  7. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006), http://www.opticsinfobase.org/as/viewmedia.cfm?id=97670&seq=0 .
    [CrossRef] [PubMed]
  8. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004), http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=81637&seq=0 .
    [CrossRef] [PubMed]
  9. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-15-26-18300&seq=0 .
    [CrossRef] [PubMed]
  10. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/jdt/viewmedia.cfm?id=85344&seq=0 .
    [CrossRef] [PubMed]
  11. Y. J. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 .
    [CrossRef] [PubMed]
  12. J. C. Feng, K. B. Jia, G. R. Yan, S. P. Zhu, C. H. Qin, Y. J. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 .
    [CrossRef] [PubMed]
  13. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
    [CrossRef] [PubMed]
  14. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
    [CrossRef] [PubMed]
  15. A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
    [CrossRef] [PubMed]
  16. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).
    [CrossRef] [PubMed]
  17. J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18(28 & 29), 1403–1431 (2004).
    [CrossRef]
  18. R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
    [CrossRef]
  19. X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-18-16266&seq=0 .
    [CrossRef] [PubMed]
  20. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
    [CrossRef] [PubMed]
  21. Q. Z. Zhang, L. Yin, Y. Y. Tan, Z. Yuan, and H. B. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16(3), 1481–1486 (2008), http://www.opticsinfobase.org/josab/viewmedia.cfm?id=149907&seq=0 .
    [CrossRef] [PubMed]
  22. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt. 46(17), 3617–3627 (2007).
    [CrossRef] [PubMed]
  23. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
    [CrossRef] [PubMed]
  24. A. Ishimaru, Wave propagation and scattering in random media (Academic, New York, 1978).
  25. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  26. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1(6), 612–619 (1984).
    [CrossRef]
  27. M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002).
    [CrossRef]
  28. G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).
  29. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
    [CrossRef]
  30. H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
    [CrossRef] [PubMed]
  31. R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17(17), 14481–14494 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-17-14481&seq=0 .
    [CrossRef] [PubMed]
  32. B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
    [CrossRef] [PubMed]
  33. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]

2010

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

2009

2008

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Q. Z. Zhang, L. Yin, Y. Y. Tan, Z. Yuan, and H. B. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16(3), 1481–1486 (2008), http://www.opticsinfobase.org/josab/viewmedia.cfm?id=149907&seq=0 .
[CrossRef] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[CrossRef] [PubMed]

J. C. Feng, K. B. Jia, G. R. Yan, S. P. Zhu, C. H. Qin, Y. J. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 .
[CrossRef] [PubMed]

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

2007

2006

2005

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/jdt/viewmedia.cfm?id=85344&seq=0 .
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

2004

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004), http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=81637&seq=0 .
[CrossRef] [PubMed]

J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18(28 & 29), 1403–1431 (2004).
[CrossRef]

2003

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
[CrossRef] [PubMed]

2002

M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002).
[CrossRef]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

1996

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

1984

Aggarwal, M.

M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002).
[CrossRef]

Ahuja, N.

M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002).
[CrossRef]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Bai, J.

Bangerth, W.

Bao, S.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Beattie, B. J.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Blasberg, R.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

Blasberg, R. G.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Chen, N.

Chen, X.

Cong, A.

Cong, W.

Cong, W. X.

Cubeddu, R.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

D’Andrea, C.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

Dai, Y.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Davis, L. C.

Davis, S. C.

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[CrossRef] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
[CrossRef] [PubMed]

Dehghani, H.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[CrossRef] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
[CrossRef] [PubMed]

Delpy, D. T.

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Dobrenkov, K.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Durairaj, K.

Economou, E. N.

Feldkamp, L. A.

Feng, J. C.

Firbank, M.

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Gao, F.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Gao, X.

Garofalakis, A.

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Han, R.

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Henry, M.

Hoffman, E.

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006), http://www.opticsinfobase.org/as/viewmedia.cfm?id=97670&seq=0 .
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Hoffman, E. A.

Hou, Y.

Jia, K. B.

Jiang, H. B.

Jiang, M.

Jiang, S.

Joshi, A.

Kioussis, D.

Klose, A. D.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Koutcher, J. A.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Kress, J. W.

Kumar, D.

Le, C.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

Le, C. H.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Li, H.

Y. J. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 .
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Li, Y.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Liang, J.

Liang, W.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Liu, Y.

Longo, V. A.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Luo, J.

Lv, Y. J.

Mamalaki, C.

Mao, J.

McCray, P. B.

McLennan, G.

Meyer, H.

Ntziachristos, V.

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt. 46(17), 3617–3627 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18(28 & 29), 1403–1431 (2004).
[CrossRef]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

Peter, J.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

Pogue, B. W.

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[CrossRef] [PubMed]

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006).
[CrossRef] [PubMed]

Ponomarev, V.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

Psycharakis, S.

Qian, X.

Qin, C.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Qin, C. H.

Qin, D.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Qu, X.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Ren, N.

Ripoll, J.

Schulz, R. B.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
[CrossRef] [PubMed]

Schweiger, M.

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

Semmler, W.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

Sevick-Muraca, E. M.

Shen, H.

Sinn, P.

Song, X.

Tan, Y. Y.

Tanikawa, Y.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Tian, J.

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17(17), 14481–14494 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-17-14481&seq=0 .
[CrossRef] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-18-16266&seq=0 .
[CrossRef] [PubMed]

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

J. C. Feng, K. B. Jia, G. R. Yan, S. P. Zhu, C. H. Qin, Y. J. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 .
[CrossRef] [PubMed]

Y. J. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 .
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Valentini, G.

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

Vider, J.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

Vider, L.

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

Wang, D.

Wang, G.

Wang, H.

Wang, L.

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-18-16266&seq=0 .
[CrossRef] [PubMed]

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Wang, L. V.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Yan, G.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Yan, G. R.

Yan, X. P.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Yang, D.

Yang, W.

Yang, X.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Yin, L.

Yuan, Z.

Zabner, J.

Zacharakis, G.

Zhang, Q. Z.

Zhao, H.

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Zhu, F.

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Zhu, S.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Zhu, S. P.

Acad. Radiol.

H. Li, J. Tian, F. Zhu, W. Cong, L. Wang, E. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004).
[CrossRef] [PubMed]

Appl. Opt.

IEEE Eng. Med. Biol. Mag.

J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[CrossRef] [PubMed]

Int. J. Comput. Vis.

M. Aggarwal and N. Ahuja, “A pupil-centric model of image formation,” Int. J. Comput. Vis. 48(3), 195–214 (2002).
[CrossRef]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

B. J. Beattie, A. D. Klose, C. H. Le, V. A. Longo, K. Dobrenkov, J. Vider, J. A. Koutcher, and R. G. Blasberg, “Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms,” J. Biomed. Opt. 14(2), 024045 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. XRay Sci. Technol.

G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).

Med. Phys.

H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008).
[CrossRef] [PubMed]

A. D. Klose, B. J. Beattie, H. Dehghani, L. Vider, C. Le, V. Ponomarev, and R. Blasberg, “In vivo bioluminescence tomography with a blocking-off finite-difference SP3 method and MRI/CT coregistration,” Med. Phys. 37(1), 329–338 (2010).
[CrossRef] [PubMed]

Mod. Phys. Lett. B

J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18(28 & 29), 1403–1431 (2004).
[CrossRef]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[CrossRef] [PubMed]

Opt. Express

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006), http://www.opticsinfobase.org/as/viewmedia.cfm?id=97670&seq=0 .
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004), http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=81637&seq=0 .
[CrossRef] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-15-26-18300&seq=0 .
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/jdt/viewmedia.cfm?id=85344&seq=0 .
[CrossRef] [PubMed]

Y. J. Lv, J. Tian, W. X. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 .
[CrossRef] [PubMed]

J. C. Feng, K. B. Jia, G. R. Yan, S. P. Zhu, C. H. Qin, Y. J. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 .
[CrossRef] [PubMed]

R. Han, J. Liang, X. Qu, Y. Hou, N. Ren, J. Mao, and J. Tian, “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Opt. Express 17(17), 14481–14494 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-17-14481&seq=0 .
[CrossRef] [PubMed]

Q. Z. Zhang, L. Yin, Y. Y. Tan, Z. Yuan, and H. B. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16(3), 1481–1486 (2008), http://www.opticsinfobase.org/josab/viewmedia.cfm?id=149907&seq=0 .
[CrossRef] [PubMed]

X. Chen, X. Gao, X. Qu, J. Liang, L. Wang, D. Yang, A. Garofalakis, J. Ripoll, and J. Tian, “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Opt. Express 17(18), 16266–16280 (2009), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-17-18-16266&seq=0 .
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41(4), 767–783 (1996).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91(10), 103901 (2003).
[CrossRef] [PubMed]

Proc. SPIE

R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Quantifiability and image quality in noncontact fluorescence tomography,” Proc. SPIE 5859, 58590Z (2005).
[CrossRef]

D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007).
[CrossRef]

Other

A. Ishimaru, Wave propagation and scattering in random media (Academic, New York, 1978).

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of the transport characteristic of diffuse light in free-space.

Fig. 2
Fig. 2

Diagram for the procedure of the reconstruction of 3D surface flux distribution.

Fig. 3
Fig. 3

Dual-modality OI/micro CT system. (1) CCD camera, (2) Camera lens, (3) X-ray tube, (4) X-ray detector, (5) Lifting tables, (6) Rotation stage, (7) Translation stages, (8) Mouse holder.

Fig. 4
Fig. 4

Experimental setup for the cubic phantom based comparison experiment. (a) Picture of the cubic phantom used in the optical imaging experiment; (b) Numerical phantom used in the simulation.

Fig. 5
Fig. 5

Comparison results between the reconstructed flux distribution and the measured or simulated results. (a) 90° view photographic image captured by the CCD camera; (b) Simulated results of MOSE; (c) Reconstructed flux distribution of the proposed method.

Fig. 6
Fig. 6

Compared curves between the reconstructed flux and the measured or simulated results at height 0, 5 and 10 mm from the center of phantom. (a)-(c) Comparisons of the reconstructed and measured flux, (d)-(f) Comparisons of the reconstructed and simulated flux; (a) and (d) 0 mm, (b) and (e) 5 mm, (c) and (f) 10 mm.

Fig. 7
Fig. 7

Experimental setup for the cylindrical phantom based comparison experiment. (a) Picture of the cylindrical phantom used in the imaging experiment; (b) Four different views for capturing 2D photographic images; (c) Numerical phantom used in the simulation.

Fig. 8
Fig. 8

Four-view 2D photographic images measured at the CCD camera. (a), (b), (c) and (d) are front-, left-, back- and right-view, respectively.

Fig. 9
Fig. 9

Comparison results between the reconstructed and the simulated flux at height 0, 5 and 10 mm from the center of the phantom surface. (a)-(c) Reconstruction using one photographic image shown in Fig. 7(a), (d)-(f) Reconstruction using two adjacent views photographic images shown in Fig. 7(a) and (b), (g)-(i) Reconstruction using three photographic images shown in Fig. 7(a), (b) and (c), (j)-(l) Reconstruction using four views photographic images shown in Fig. 7(a)-(d); (a), (d), (g) and (j) 0 mm; (b), (e), (h) and (k) 5 mm; (c), (f), (i) and (l) 10 mm.

Fig. 10
Fig. 10

Reconstructed flux at height 0 mm from the center of phantom surface. (a)-(c) Reconstruction using different density of surface meshes, including 48600, 194400 and 388800 elements, respectively; (d) Logarithmic curve for the reconstruction using various photographic views images compared with the simulated flux.

Fig. 12
Fig. 12

Experimental setup and results for the mouse phantom based comparison experiment. (a) Picture of the mouse phantom used in the imaging experiment; (b) Simulated flux distribution of MOSE; (c) Reconstructed flux distribution of the proposed method; (d)-(f) Compared curves between the reconstructed and the simulated flux at height 13, 17 and 21 mm, respectively.

Fig. 11
Fig. 11

Four-view 2D photographic images measured at the CCD camera. (a) Ventral view; (b) Left lateral view; (c) Dorsal view; (d) Right lateral view.

Fig. 13
Fig. 13

Comparison results of the internal light source reconstruction. (a) Reconstruction using the simulated surface flux of MOSE; (b) Reconstruction using the reconstructed surface flux of the proposed method.

Fig. 14
Fig. 14

Reconstructed surface flux of living mouse based in vivo imaging experiment.

Fig. 15
Fig. 15

Recovered internal catheter source of living mouse based in vivo imaging experiment using the reconstructed surface flux distribution. (a) 3D view of the recovered internal source result; (b)-(d) the corresponding coronal, axial and sagittal views, respectively. The position of the recovered source is marked with red circle.

Tables (3)

Tables Icon

Table 1 Error comparisons between the reconstructed and the measured or simulated results

Tables Icon

Table 2 Error comparisons between the reconstructed and the simulated results

Tables Icon

Table 3 Optical properties for the organs of mouse

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d P ( r d ) = 1 π J ( r s ) cos θ s cos θ d | r d r s | 2 d A d d A s ,
J ( r ) = 1 π Ω B ( r d ) T ( r d , r ) d Ω ,
= Θ Q 1 E 0 t p 1 ,
E 0 = h c λ ,
T ( r d , r ) = τ ( f ) ξ ( r d , r ) 1 | r r d t u 2 f cos θ s ( r d , r d * ) | 2 cos θ s cos θ d ,
J = 1 π B ( r d ) T ( r d , r ) d Ω d S .
J = AB ,
{ J i = J ( r i ) A i j = 1 π T ( r d j , r i ) B j = B ( r d j ) ,
e ¯ = i = 1 N | P r e c ( i ) P s i m ( i ) | / N , and ρ = i = 1 N ( P r e c ( i ) P ¯ r e c ) ( P s i m ( i ) P ¯ s i m ) / ( ( N 1 ) σ ( P r e c ) σ ( P s i m ) ) ,

Metrics