Abstract

The use of digital holographic interferometry for 3D measurements using simultaneously three illumination directions was demonstrated by Saucedo et al. (Optics Express 14(4) 2006). The technique records two consecutive images where each one contains three holograms in it, e.g., one before the deformation and one after the deformation. A short coherence length laser must be used to obtain the simultaneous 3D information from the same laser source. In this manuscript we present an extension of this technique now illuminating simultaneously with three different lasers at 458, 532 and 633 nm, and using only one high resolution monochrome CMOS sensor. This new configuration gives the opportunity to use long coherence length lasers allowing the measurement of large object areas. A series of digital holographic interferograms are recorded and the information corresponding to each laser is isolated in the Fourier spectral domain where the corresponding phase difference is calculated. Experimental results render the orthogonal displacement components u, v and w during a simple load deformation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Vest, Holography Interferometry, (Wyle, New York, 1979).
  2. K. J. Gåsvik, Optical Metrology, (John Wiley & Sons Ltd., Chichester, 2002).
  3. T T. Saucedo Anaya, M. De la Torre, and F. Mendoza Santoyo, “Microstrain detection using simultaneous endoscopic pulsed digital holography,” Opt. Eng. 47(7), 073601 (2008).
    [CrossRef]
  4. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [CrossRef]
  5. M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005).
    [PubMed]
  6. Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
    [CrossRef]
  7. T. Saucedo A, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45(19), 4534–4539 (2006).
    [CrossRef] [PubMed]
  8. A. T. Saucedo, F. Mendoza Santoyo, M. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14(4), 1468–1475 (2006).
    [CrossRef] [PubMed]
  9. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [CrossRef] [PubMed]
  10. Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
    [CrossRef]
  11. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
    [CrossRef]
  12. P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33(3), 276–278 (2008).
    [CrossRef] [PubMed]
  13. J.-M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16(8), 5471–5480 (2008).
    [CrossRef] [PubMed]
  14. M. S. Millán, E. Valencia, and M. Corbalán, “3CCD camera’s capability for measuring color differences: experiment in the nearly neutral region,” Appl. Opt. 43(36), 6523–6535 (2004).
    [CrossRef]
  15. C. van Trigt, “Visual system-response functions and estimating reflectance,” J. Opt. Soc. Am. A 14(4), 741–755 (1997).
    [CrossRef]
  16. A. Alsam and R. Lenz, “Calibrating color cameras using metameric blacks,” J. Opt. Soc. Am. A 24(1), 11–17 (2007).
    [CrossRef]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  18. T. Kreis, Hand book of holographic Interferometry, (Wiley-VCH, 2005).

2009 (1)

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
[CrossRef]

2008 (4)

2007 (1)

2006 (2)

2005 (1)

2004 (1)

2002 (1)

1999 (2)

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[CrossRef]

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

1997 (1)

1982 (1)

Alsam, A.

Bingham, P. R.

Corbalán, M.

De la Torre, M.

T T. Saucedo Anaya, M. De la Torre, and F. Mendoza Santoyo, “Microstrain detection using simultaneous endoscopic pulsed digital holography,” Opt. Eng. 47(7), 073601 (2008).
[CrossRef]

De la Torre Ibarra, M.

De la Torre-Ibarra, M.

Desse, J. M.

Desse, J.-M.

Ettemeyer, A.

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

Fu, Y.

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
[CrossRef]

Groves, R. M.

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
[CrossRef]

Hennelly, B. M.

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
[CrossRef]

Ina, H.

Kato, J.

Kobayashi, S.

Lenz, R.

Mann, C. J.

Matsumura, T.

Mendoza Santoyo, F.

T T. Saucedo Anaya, M. De la Torre, and F. Mendoza Santoyo, “Microstrain detection using simultaneous endoscopic pulsed digital holography,” Opt. Eng. 47(7), 073601 (2008).
[CrossRef]

A. T. Saucedo, F. Mendoza Santoyo, M. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14(4), 1468–1475 (2006).
[CrossRef] [PubMed]

Mendoza-Santoyo, F.

Millán, M. S.

Mounier, D.

Osten, W.

Paquit, V. C.

Pedrini, G.

Pérez-López, C.

Picart, P.

Santoyo, F. M.

Saucedo, A. T.

Saucedo A, T.

Saucedo Anaya, T T.

T T. Saucedo Anaya, M. De la Torre, and F. Mendoza Santoyo, “Microstrain detection using simultaneous endoscopic pulsed digital holography,” Opt. Eng. 47(7), 073601 (2008).
[CrossRef]

Schedin, S.

Schubach, H. R.

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

Takeda, M.

Tankam, P.

Tiziani, H. J.

Tobin, K. W.

Tonatiuh, S. A.

Valencia, E.

van Trigt, C.

Walz, T.

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

Wang, Z.

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

Yamaguchi, I.

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

T T. Saucedo Anaya, M. De la Torre, and F. Mendoza Santoyo, “Microstrain detection using simultaneous endoscopic pulsed digital holography,” Opt. Eng. 47(7), 073601 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47(5), 552–557 (2009).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

Z. Wang, T. Walz, H. R. Schubach, and A. Ettemeyer, “Three dimensional pulsed ESPI:technique of analysis of dynamic problems,” Proc. SPIE 3824, 58 (1999).
[CrossRef]

Other (3)

C. M. Vest, Holography Interferometry, (Wyle, New York, 1979).

K. J. Gåsvik, Optical Metrology, (John Wiley & Sons Ltd., Chichester, 2002).

T. Kreis, Hand book of holographic Interferometry, (Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup (a) Schematic view of the optical set up using three lasers, (b) Mechanical rig used to illuminate and constrain the sample under study. From this geometry θ 1 = θ 2 = θ 3 = θ .

Fig. 2
Fig. 2

Fourier spectrum showing the spectral distributions for each laser in a single hologram. The upper three circles from left to right are λ2, λ1 and λ3 respectively. The lower three circles are the corresponding complex conjugate terms.

Fig. 3
Fig. 3

Wrapped phase maps for (a) Argon-ion (λ1 = 458 nm) (b) diode pumped CW Nd:YAG (λ2 = 532 nm), and (c) He-Ne (λ3 = 633 nm) lasers, showing deformation variations between -π and π (black and white respectively).

Fig. 4
Fig. 4

Orthogonal displacement components (a) u (b) v and (c) w obtained with the wrapped phase maps shown in Figs. 3a, 3b and 3c respectively.

Fig. 5
Fig. 5

Orthogonal displacement components (a) u (b) v and (c) w obtained during the heating test.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = m = 1 3 I λ m ( x , y ) = m = 1 3 [ | R λ m ( x , y ) + O λ m ( x , y ) | 2 ] ,
Δ φ λ m ( x , y ) = φ λ m ' ( x , y ) φ λ m ( x , y ) ,
[ Δ φ λ 1 Δ φ λ 2 Δ φ λ 3 ] = 2 π [ sin θ / λ 1 0 ( cos θ + 1 ) / λ 1 sin θ / λ 2 0 ( cos θ + 1 ) / λ 2 0 sin θ / λ 3 ( cos θ + 1 ) / λ 3 ] [ u v w ] ,

Metrics