Abstract

We present a novel coupling scheme using a collimating gradient-index (GRIN) element provided with a high frequency grating to couple light from a single mode optical fiber directly to planar thin-film waveguides. The waveguide devices are used, for example, for an efficient fluorescence excitation in biosensor applications. The external coupler can be multiply reused and supersedes the conventional internal gratings. FEM simulations and experimental results show that the new technique can provide similar coupling efficiencies as common internal grating couplers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
    [CrossRef]
  2. G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
    [CrossRef]
  3. G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
    [CrossRef]
  4. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
    [CrossRef]
  5. Ch. Fattinger, “The bidiffractive grating coupler,” Appl. Phys. Lett. 62(13), 1460–1462 (1993).
    [CrossRef]
  6. W. Lukosz and K. Tiefenthaler, “Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials,” Opt. Lett. 8(10), 537–539 (1983).
    [CrossRef] [PubMed]
  7. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
    [CrossRef]
  8. S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).
  9. A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
    [CrossRef]
  10. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36(12), 2443–2447 (1997).
    [CrossRef] [PubMed]
  11. P. R. Herman, “F2-Laser Microfabrication for Photonics and Biophotonics,” in Excimer Laser Technology, D. Basting and G. Marowsky, eds., (Springer, Berlin, 2005), chap. 13.
  12. M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
    [CrossRef] [PubMed]
  13. R. Ulrich, “Efficiency of optical-grating couplers,” J. Opt. Soc. Am. 63(11), 1419–1431 (1973).
    [CrossRef]

2010

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

2008

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

2006

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

2004

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

2002

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

1999

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

1997

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36(12), 2443–2447 (1997).
[CrossRef] [PubMed]

1993

Ch. Fattinger, “The bidiffractive grating coupler,” Appl. Phys. Lett. 62(13), 1460–1462 (1993).
[CrossRef]

1983

1973

1970

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Abel, A. P.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

Anselmetti, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Ay, F.

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

Aydinli, A.

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

Bär, E.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Beinhorn, F.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Bopp, M. A.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

Budach, W.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Dâna, A.

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

Duveneck, G. L.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Edlinger, J.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Ehrat, M.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Fattinger, Ch.

Ch. Fattinger, “The bidiffractive grating coupler,” Appl. Phys. Lett. 62(13), 1460–1462 (1993).
[CrossRef]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Hoffmann, C.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Hüttmann, G.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

Ihlemann, J.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Kocabas, A.

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

Koster, A.

Kresbach, G. M.

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Lankenau, E.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

Laval, S.

Layadi, A.

Lukosz, W.

Maisenhölder, B.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Marowsky, G.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Müller, H. H.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

Neuschäfer, D.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Oehse, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Orobtchouk, R.

Pascal, D.

Pawlak, M.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Pieles, U.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Pissadakis, S.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

Reekie, L.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

Schmitt, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Simon, P.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

Sulz, G.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Tiefenthaler, K.

Ulrich, R.

Wiesner, M.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

Wilkinson, J. S.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

Zervas, M. N.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

Anal. Chim. Acta

G. L. Duveneck, A. P. Abel, M. A. Bopp, G. M. Kresbach, and M. Ehrat, “Planar waveguides for ultrahigh sensitivity of the analysis of nucleic acids,” Anal. Chim. Acta 469(1), 49–61 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “Grating couplers for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[CrossRef]

Ch. Fattinger, “The bidiffractive grating coupler,” Appl. Phys. Lett. 62(13), 1460–1462 (1993).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Pissadakis, M. N. Zervas, L. Reekie, and J. S. Wilkinson, “High-reflectivity Bragg gratings fabricated by 248-nm excimer laser holographic ablation in thin Ta2O5 films overlaid on glass waveguides,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 1093–1096 (2004).

Appl. Surf. Sci.

F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-micron grating formation in Ta2O5 waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138-139(1-2), 107–110 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Kocabas, F. Ay, A. Dâna, and A. Aydinli, “An elastomeric grating coupler,” J. Opt. A, Pure Appl. Opt. 8(1), 85–87 (2006).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Rev. Sci. Instrum.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bär, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem. 38(1-3), 88–95 (1997).
[CrossRef]

Sensors

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides - a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Other

P. R. Herman, “F2-Laser Microfabrication for Photonics and Biophotonics,” in Excimer Laser Technology, D. Basting and G. Marowsky, eds., (Springer, Berlin, 2005), chap. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the waveguide coupling scheme via a collimating GRIN lens with an angle-polished end face and structured with a high-frequency grating. Experimental parameters d: grating depth, g: gap width between waveguide surface and grating, L: grating length, b: diameter of collimated beam, θ: incidence angle.

Fig. 2
Fig. 2

Model used for the FEM simulation, depicting the out-of-plane component of the electric field in a false color representation.

Fig. 3
Fig. 3

Coupling efficiency vs. coupling angle for different gap width between the end face of the external grating coupler and the waveguide surface. The grating depth is d = 100 nm.

Fig. 4
Fig. 4

Coupling efficiency at resonance vs. gap width for different grating depth of the external grating coupler.

Fig. 5
Fig. 5

Coupling efficiency vs. grating coupling length given as a ratio of the beam diameter for different grating depth and gap width.

Fig. 6
Fig. 6

Left: microscope image of the end face of a grating structured GRIN lens; center: AFM measurement of the grating relief in a false color representation; right: selected line profiles.

Fig. 7
Fig. 7

Experimental demonstration of waveguide coupling by an external GRIN lens showing the waveguide chip, the GRIN lens mounted in a V-clamp and the fiber chuck. Left: laser off; center: misaligned coupling angle; right: resonant coupling.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k m = k 0 n i sin θ + r 2 π Λ

Metrics