Abstract

The point-by-point technique of fabricating fibre-Bragg gratings using an ultrafast laser enables complete control of the position of each index modification that comprises the grating. By tailoring the local phase, amplitude and spacing of the grating’s refractive index modulations it is possible to create gratings with complex transmission and reflection spectra. We report a series of grating structures that were realized by exploiting these flexibilities. Such structures include gratings with controlled bandwidth, and amplitude- and phase-modulated sampled (or superstructured) gratings. A model based on coupled-mode theory provides important insights into the manufacture of such gratings. Our approach offers a quick and easy method of producing complex, non-uniform grating structures in both fibres and other mono-mode waveguiding structures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
    [CrossRef]
  2. N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
    [CrossRef] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
    [CrossRef]
  4. Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
    [CrossRef] [PubMed]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
    [CrossRef] [PubMed]
  6. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
    [CrossRef] [PubMed]
  7. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
    [CrossRef]
  8. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
    [CrossRef]
  9. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
    [CrossRef]
  10. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
    [CrossRef] [PubMed]
  11. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
    [CrossRef]
  12. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
    [CrossRef]
  13. B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
    [CrossRef]
  14. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
    [CrossRef] [PubMed]
  15. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
    [CrossRef] [PubMed]
  16. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
    [CrossRef]
  17. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
    [CrossRef] [PubMed]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
    [CrossRef]
  19. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
    [CrossRef] [PubMed]
  20. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
    [CrossRef]
  21. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
    [CrossRef]
  22. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 .
    [CrossRef]
  23. M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
    [CrossRef] [PubMed]
  24. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005), http://dx.doi.org/10.1364/OPEX.13.004180 .
    [CrossRef] [PubMed]
  25. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
    [CrossRef] [PubMed]
  26. A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
    [CrossRef]
  27. S. Ha and A. A. Sukhorukov, “Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers,” J. Opt. Soc. Am. B 25(12), C15–C22 (2008), http://dx.doi.org/10.1364/JOSAB.25.000C15 .
    [CrossRef]

2010

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[CrossRef] [PubMed]

2009

2008

2007

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[CrossRef] [PubMed]

2006

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[CrossRef] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

2005

2004

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

2003

1998

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[CrossRef]

1994

J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 .
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[CrossRef]

1993

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Albert, J.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Ams, M.

Åslund, M.

Åslund, M. L.

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[CrossRef] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

Bilodeau, F.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Burghoff, J.

Canning, J.

Castro, J. M.

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

Dawes, J. M.

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

de Sterke, C. M.

Ding, H. M.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[CrossRef]

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[CrossRef]

Geraghty, D. F.

Greiner, C. M.

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Groothoff, N.

Ha, S.

Henderson, G.

Hill, K. O.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Honkanen, S.

Iazikov, D.

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

Jackson, S. D.

Johnson, D. C.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Jovanovic, N.

Judge, A.

Khrushchev, I.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[CrossRef] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[CrossRef]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[CrossRef]

Lai, Y.

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

Lee, A. J.

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

Limpert, J.

Lu, P.

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Malo, B.

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

Marshall, G. D.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[CrossRef] [PubMed]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[CrossRef] [PubMed]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[CrossRef] [PubMed]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[CrossRef] [PubMed]

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[CrossRef] [PubMed]

Martinez, A.

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[CrossRef]

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Mossberg, T. W.

Nemanja, N.

Nolte, S.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

Ortaç, B.

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[CrossRef]

Poladian, L.

Rahmani, A.

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

Sipe, J. E.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[CrossRef] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Steel, M.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

Steel, M. J.

Sukhorukov, A. A.

Thomas, J.

Thomas, J. U.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

Tünnermann, A.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

Unruh, J.

Voigtländer, C.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

Wikszak, E.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

Williams, R. J.

Withford, M. J.

R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[CrossRef] [PubMed]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[CrossRef] [PubMed]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[CrossRef] [PubMed]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[CrossRef] [PubMed]

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[CrossRef] [PubMed]

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

Appl. Opt.

Appl. Phys., A Mater. Sci. Process.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[CrossRef]

A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[CrossRef]

Electron. Lett.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[CrossRef]

B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[CrossRef]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[CrossRef]

IEEE Photon. Technol. Lett.

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Meas. Sci. Technol.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[CrossRef]

Opt. Express

Opt. Lett.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[CrossRef] [PubMed]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[CrossRef] [PubMed]

Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[CrossRef] [PubMed]

N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[CrossRef] [PubMed]

Proc. SPIE

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of the FBG writing setup showing focusing objective, and optical fibre being held in the alignment ferrule. For clarity the working distance of the objective is exaggerated and the objective’s immersion oil is not shown. (b) A micrograph of the end of the 1 mm diameter (10 mm long) ferrule showing the D-shaped cross-section. The ferrule was sourced from Thorlabs (part no. TS125) and polished in-house to achieve the D-shaped section.

Fig. 2
Fig. 2

Timing and control system used for PbP grating writing. Optical components apart from the focusing objective and ferrule are not shown.

Fig. 3
Fig. 3

Bandwidth and coupling coefficient for gratings of orders from 1 to 5. The blue and red trend lines are linear fits of the bandwidth and κ data, the grey trend line is intended as a guide to the eye.

Fig. 4
Fig. 4

Uniform grating (left - green) and chirped grating (right - blue). The widths of the resonances are given at the −3 dB point (equivalent to linear FWHM).

Fig. 5
Fig. 5

Amplitude modulated sampled-grating. (a) Two micrographs of the start and end point of one modulation—the fibre’s core occupies the majority of the image and the grating’s ~1 µm pitch modulations are clearly visible. (b) The transmission spectrum of the grating—the strong central Bragg resonance is accompanied by the sampled-grating sideband resonances.

Fig. 6
Fig. 6

Phase modulated sample grating. (a) Two micrographs of the fibre core in a region containing a phase shift. The whole core is shown on the left and the phase shift region is further magnified on the right. (b) The transmission spectrum of the grating—the fundamental Bragg resonance has been suppressed leaving just the sampled grating sidebands.

Fig. 7
Fig. 7

Post-manufacture tuning of a single phase-shifted grating. After fabrication (red plot) the grating’s central phase-shift was adjusted in three stages through the orange and green plots to its final value resulting in the blue transmission profile. Each transmission curve is incremented vertically 1 division for clarity.

Fig. 8
Fig. 8

The ideal coupling coefficient over two envelopes of the sinc profile grating. Positive and negative coupling strength sections are shown in red and blue respectively.

Fig. 9
Fig. 9

Combined phase and amplitude modulation grating. (a) A micrograph montage shows the sinc form of the lateral displacement of the grating about the core centre. The horizontal axis of the image is compressed by a factor of four and shows the displacement of the grating from the core centre, across the core/cladding boundary, to the first phase shift at the inversion of the sinc profile. (b) Reflection spectrum from the grating. (c) Modelled reflection spectrum for the same grating presented in (b)—discussed in section 8. (d) Modelled reflection spectrum for idealized PbP grating with no core-centre overshoot—discussed in section 8.

Fig. 10
Fig. 10

(a) Modification displacement function for two periods of the grating in Fig. 9 with x 0 = 2.25   μm and x 1 = 5.20   μm . (b) Coupling coefficient κ ( z ) (red and blue) and the local detuning σ ( z ) (green) resulting from (a). (Note that the sign of the detuning is negated for clarity.)

Fig. 11
Fig. 11

Optical micrograph of an anti-symmetric FBG prototype. The grating was fabricated during a single translation process.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff v m f .
R = tanh 2 ( κ L ) .
κ = π λ B Δ n .
Δ λ = λ B 2 2 n eff κ 2 π 2 + 1 L 2 .
Δ λ S λ B 2 2 n eff Λ S .
i d A + d z = ( δ + σ ( z ) ) A + + κ ( z ) A i d A d z = ( δ + σ ( z ) ) A + κ ( z ) A + ,
δ = 2 π n eff ( 1 λ 1 λ B ) ,
| κ ( z ) | = κ 0 e ( x ( z ) w / 4 ) 2 ,
x ( z ) = x 1 + ( x 0 x 1 ) | sinc 2 π z Λ s / N o | .
σ ( z ) = 2 | κ ( z ) | .

Metrics