J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
S. Ha and A. A. Sukhorukov, “Nonlinear switching and reshaping of slow-light pulses in Bragg-grating couplers,” J. Opt. Soc. Am. B 25(12), C15–C22 (2008), http://dx.doi.org/10.1364/JOSAB.25.000C15 .
[Crossref]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[Crossref]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[Crossref]
[PubMed]
Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[Crossref]
[PubMed]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[Crossref]
[PubMed]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[Crossref]
J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005), http://dx.doi.org/10.1364/OPEX.13.004180 .
[Crossref]
[PubMed]
C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[Crossref]
[PubMed]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
[Crossref]
[PubMed]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[Crossref]
J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 .
[Crossref]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[Crossref]
[PubMed]
Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[Crossref]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
[Crossref]
[PubMed]
J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 .
[Crossref]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[Crossref]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[Crossref]
[PubMed]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[Crossref]
[PubMed]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[Crossref]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[Crossref]
[PubMed]
Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[Crossref]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[Crossref]
[PubMed]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
M. Åslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, “Antisymmetric grating coupler: experimental results,” Appl. Opt. 42(33), 6578–6583 (2003), http://dx.doi.org/10.1364/AO.42.006578 .
[Crossref]
[PubMed]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through Nonuniform Grating Structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994), http://dx.doi.org/10.1364/JOSAA.11.001307 .
[Crossref]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[Crossref]
[PubMed]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[Crossref]
[PubMed]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006), http://dx.doi.org/10.1007/s00339-006-3754-2 .
[Crossref]
A. J. Lee, A. Rahmani, J. M. Dawes, G. D. Marshall, and M. J. Withford, “Point-by-point inscription of narrow-band gratings in polymer ridge waveguides,” Appl. Phys., A Mater. Sci. Process. 90(2), 273–276 (2007), http://dx.doi.org/10.1007/s00339-007-4261-9 .
[Crossref]
B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long Periodic Superstructure Bragg Gratings in Optical Fibers,” Electron. Lett. 30(19), 1620–1622 (1994), http://dx.doi.org/10.1049/el:19941088 .
[Crossref]
B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, “Point-by-Point Fabrication of Micro-Bragg Gratings in Photosensitive Fiber Using Single Excimer Pulse Refractive-Index Modification Techniques,” Electron. Lett. 29(18), 1668–1669 (1993), http://dx.doi.org/10.1049/el:19931110 .
[Crossref]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005), http://dx.doi.org/10.1049/El:20057898 .
[Crossref]
A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004), http://dx.doi.org/10.1049/El:20046050 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 16(8), 1864–1866 (2004), http://dx.doi.org/10.1109/LPT.2004.831239 .
[Crossref]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004), http://dx.doi.org/10.1109/Lpt.2004.834920 .
[Crossref]
M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10(6), 842–844 (1998), http://dx.doi.org/10.1109/68.681504 .
[Crossref]
T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997), http://dx.doi.org/10.1109/50.618322 .
[Crossref]
D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006), http://dx.doi.org/10.1088/0957-0233/17/5/S12 .
[Crossref]
R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008), http://dx.doi.org/10.1038/nphoton.2008.47 .
[Crossref]
J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005), http://dx.doi.org/10.1364/OPEX.13.004180 .
[Crossref]
[PubMed]
C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005), http://dx.doi.org/10.1364/OPEX.13.005377 .
[Crossref]
[PubMed]
M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008), http://dx.doi.org/10.1364/OE.16.014248 .
[Crossref]
[PubMed]
N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009), http://dx.doi.org/10.1364/OE.17.006082 .
[Crossref]
[PubMed]
R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010), http://dx.doi.org/10.1364/OE.18.007714 .
[Crossref]
[PubMed]
S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. M. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003), http://dx.doi.org/10.1364/OL.28.000995 .
[Crossref]
[PubMed]
A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006), http://dx.doi.org/10.1364/OL.31.001603 .
[Crossref]
[PubMed]
Y. Lai, A. Martinez, I. Khrushchev, and I. Bennion, “Distributed Bragg reflector fiber laser fabricated by femtosecond laser inscription,” Opt. Lett. 31(11), 1672–1674 (2006), http://dx.doi.org/10.1364/OL.31.001672 .
[Crossref]
[PubMed]
E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006), http://dx.doi.org/10.1364/OL.31.002390 .
[Crossref]
[PubMed]
G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31(18), 2690–2691 (2006), http://dx.doi.org/10.1364/OL.31.002690 .
[Crossref]
[PubMed]
N. Jovanovic, M. Åslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007), http://dx.doi.org/10.1364/OL.32.002804 .
[Crossref]
[PubMed]
J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre-Bragg gratings,” Proc. SPIE 7589, 75890J (2010), http://dx.doi.org/10.1117/12.843805 .
[Crossref]