Abstract

Most optical fibers are designed for forward firing i.e. the light is emitted at the distal end along the optical axis of the fiber. In some applications such as the laser surgery and laser scanners, side firing of the optical fiber is required. In this paper, we present the microstructuring of an optical fiber tip using the femtosecond laser and an arc discharging process for the multidirectional firing of the beam. The distal end of the optical fiber with diameter of 125 μm was machined into a conical structure using a femtosecond laser. The surface of the machined tip was exposed to the arc discharge using a fiber splicer. The arc discharge leads to the melting and re-solidification of the fiber tip. This results in a smoothing of laser-induced conical microstructure at the tip of the fiber. We were able to demonstrate the multidirectional (circumferential) emission of the light from the developed fiber tip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
    [CrossRef]
  2. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
    [CrossRef]
  3. M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
    [CrossRef]
  4. R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
    [CrossRef]
  5. R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
    [CrossRef] [PubMed]
  6. I.-B. Sohn, M.-S. Lee, J.-S. Woo, S.-M. Lee, and J.-Y. Chung, “Fabrication of photonic devices directly written within glass using a femtosecond laser,” Opt. Express 13(11), 4224–4229 (2005).
    [CrossRef] [PubMed]
  7. I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
    [CrossRef]
  8. J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
    [CrossRef]
  9. I.-B. Sohn, Y. Kim, Y.-C. Noh, J.-C. Ryu, and J.-T. Kim, “Microstucturing of optical fiber using a femtosecond laser,” J. Opt. Soc. Korea 13(1), 33–36 (2009).
    [CrossRef]
  10. H. Y. Choi, S. Y. Ryu, J. Na, B. H. Lee, I. B. Sohn, Y. C. Noh, and J. Lee, “Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems,” Opt. Lett. 33(1), 34–36 (2008).
    [CrossRef]
  11. http://www.somta.lv, http://www.meshtel.com .

2009 (2)

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

I.-B. Sohn, Y. Kim, Y.-C. Noh, J.-C. Ryu, and J.-T. Kim, “Microstucturing of optical fiber using a femtosecond laser,” J. Opt. Soc. Korea 13(1), 33–36 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

R. Martinez-Vazquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, “Fabrication of photonic devices in nanostructured glasses by femtosecond laser pulses,” Opt. Express 15(20), 12628–12635 (2007).
[CrossRef] [PubMed]

2005 (3)

I.-B. Sohn, M.-S. Lee, J.-S. Woo, S.-M. Lee, and J.-Y. Chung, “Fabrication of photonic devices directly written within glass using a femtosecond laser,” Opt. Express 13(11), 4224–4229 (2005).
[CrossRef] [PubMed]

I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

1999 (1)

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

1996 (1)

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Amer, M. S.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

Bähnisch, R.

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

Cerullo, G.

Choi, H. Y.

Chung, J.-Y.

Chung, S.

I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
[CrossRef]

Da Silva, L. B.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Delaporte, Ph.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Dosser, L. R.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

El-Ashry, M. A.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

Fares, L.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Feit, M. D.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Gong, W. W.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Groß, W.

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

Halbwax, M.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Haller, G.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Hermann, J.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Hix, K. E.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

Irwin, B.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

Kim, J.-T.

Kim, Y.

Lee, B. H.

Lee, J.

Lee, M.-S.

Lee, S.-M.

Lu, S. Z.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Maguire, J. F.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

Martinez-Vazquez, R.

Maxwell, I.

I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
[CrossRef]

Mazur, E.

I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
[CrossRef]

Menschig, A.

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

Na, J.

Neev, J.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Noh, Y. C.

Noh, Y.-C.

Osellame, R.

Perry, M. D.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Ramponi, R.

Ren, X. G.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Rubenchik, A. M.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Ryu, J.-C.

Ryu, S. Y.

Sarnet, T.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Sentis, M.

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

Sohn, I. B.

Sohn, I.-B.

Staud, J.

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

Stuart, B. C.

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

Svelto, O.

Woo, J.-S.

Zhao, H. F.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Zheng, J. J.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Zheng, Z. H.

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

Appl. Surf. Sci. (3)

W. W. Gong, Z. H. Zheng, J. J. Zheng, H. F. Zhao, X. G. Ren, and S. Z. Lu, “Femtosecond laser induced submicrometer structures on the ablation crater walls of II–VI semiconductors in water,” Appl. Surf. Sci. 255(7), 4351–4354 (2009).
[CrossRef]

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242(1-2), 162–167 (2005).
[CrossRef]

M. Halbwax, T. Sarnet, J. Hermann, Ph. Delaporte, M. Sentis, L. Fares, and G. Haller, “Micromachining of semiconductor by femtosecond laser for integrated circuit defect analysis,” Appl. Surf. Sci. 254(4), 911–915 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Ultrashort Pulse Lasers for Hard Tissue Ablation,” IEEE J. Sel. Top. Quantum Electron. 2(4), 790–800 (1996).
[CrossRef]

J. Opt. Soc. Korea (1)

Med. Laser Appl. (1)

I. Maxwell, S. Chung, and E. Mazur, “Nanoprocessing of subcellular targets using femtosecond laser pulses,” Med. Laser Appl. 20(3), 193–200 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

R. Bähnisch, W. Groß, J. Staud, and A. Menschig, “Femtosecond laser-based technology for fast development of micromechanical devices,” Sens. Actuators A Phys. 74(1-3), 31–34 (1999).
[CrossRef]

Other (1)

http://www.somta.lv, http://www.meshtel.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic set-up for femtosecond laser microstructuring of optical fiber.

Fig. 2
Fig. 2

SEM and optical microscope image of the optical fiber tip microstructured by using a femtosecond laser.

Fig. 3
Fig. 3

SEM and optical microscope image of the optical fiber tip polished by post-process of arc discharge.

Fig. 4
Fig. 4

The images of the beam emission at the tip of the fiber. Images are taken with a digital camera (a) before and (b) after the femtosecond laser microstructuring to the conical shape, (c) after the arc discharge following the laser machining.

Metrics