Abstract

This paper presents a technique that reaches 3-D shape measurement speed beyond the digital-light-processing (DLP) projector’s projection speed. In particular, a “solid-state” binary structured pattern is generated with each micro-mirror pixel always being at one status (ON or OFF). By this means, any time segment of projection can represent the whole signal, thus the exposure time can be shorter than the projection time. A sinusoidal fringe pattern is generated by properly defocusing a binary one, and the Fourier fringe analysis means is used for 3-D shape recovery. We have successfully reached 4,000 Hz rate (80 µs exposure time) 3-D shape measurement speed with an off-the-shelf DLP projector.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
    [Crossref]
  2. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shape,” Appl. Opt. 22, 3977–3982 (1983).
    [Crossref] [PubMed]
  3. M. Takeda, “Measurements of extreme physical phenomena by Fourier fringe analysis,” in AIP Conference Proc., vol. 1236, pp. 445–448 (2010).
  4. P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
    [Crossref]
  5. Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052–1061 (2009).
    [Crossref]
  6. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
    [Crossref]
  7. S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 40, 149–158 (2010).
    [Crossref]
  8. L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” in Proc. SPIE, vol. 3013, pp. 27–40 (1997).
  9. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
    [Crossref]
  10. S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
    [Crossref]
  11. O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in The 8th IEEE International Conference on Computer Vision, pp. II: 359–366 (2001).
  12. J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
    [Crossref]
  13. S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
    [Crossref]
  14. S. Zhang, Advances in measurement systems, chap. 2, pp. 29–50 (In-Tech, 2010).
  15. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [Crossref] [PubMed]
  16. X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
    [Crossref]
  17. X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Laser Eng. 48, 191–204 (2010).
    [Crossref]
  18. D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (JohnWiley and Sons, Inc., 1998).
  19. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [Crossref]
  20. C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
    [Crossref] [PubMed]
  21. S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50–57 (2007).
    [Crossref]
  22. S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
    [Crossref] [PubMed]

2010 (5)

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 40, 149–158 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
[Crossref]

2007 (1)

2006 (2)

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[Crossref]

2005 (1)

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
[Crossref]

2003 (1)

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[Crossref]

2002 (2)

1992 (1)

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

1983 (1)

Chiang, F.-P.

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[Crossref]

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref] [PubMed]

Davis, J.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
[Crossref]

Du, H.

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (JohnWiley and Sons, Inc., 1998).

Gorthi, S.

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Hall-Holt, O.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in The 8th IEEE International Conference on Computer Vision, pp. II: 359–366 (2001).

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” in Proc. SPIE, vol. 3013, pp. 27–40 (1997).

Huang, P. S.

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[Crossref]

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref] [PubMed]

Koppal, S. J.

S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
[Crossref]

Lei, S.

Levoy, M.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

Li, X.

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Mutoh, K.

Narasimhan, S. G.

S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
[Crossref]

Oliver, J.

Park, S.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (JohnWiley and Sons, Inc., 1998).

Ramamoorthi, R.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
[Crossref]

Rastogi, P.

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Rusinkiewicz, S.

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
[Crossref]

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in The 8th IEEE International Conference on Computer Vision, pp. II: 359–366 (2001).

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Su, X.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Su, X. Y.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Takeda, M.

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shape,” Appl. Opt. 22, 3977–3982 (1983).
[Crossref] [PubMed]

M. Takeda, “Measurements of extreme physical phenomena by Fourier fringe analysis,” in AIP Conference Proc., vol. 1236, pp. 445–448 (2010).

van der Weide, D.

Von Bally, G.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Vukicevic, D.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Wang, Z.

Xie, H.

Yamazaki, S.

S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
[Crossref]

Yau, S.-T.

Zhang, C.

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[Crossref]

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref] [PubMed]

Zhang, Q.

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Zhang, S.

S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[Crossref] [PubMed]

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 40, 149–158 (2010).
[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[Crossref] [PubMed]

S. Zhang, X. Li, and S.-T. Yau, “Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction,” Appl. Opt. 46, 50–57 (2007).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[Crossref]

S. Zhang, Advances in measurement systems, chap. 2, pp. 29–50 (In-Tech, 2010).

Zhou, W. S.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

ACM Trans. Graph. (1)

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Davis, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: A unifying framework for depth from triangulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1–7 (2005).
[Crossref]

Lect. Notes Comput. Sci. (1)

S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, “Temporal Dithering of Illumination for Fast Active Vision,” Lect. Notes Comput. Sci. 5305, 830–844 (2008).
[Crossref]

Opt. Commun. (1)

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Opt. Eng. (3)

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng. 45, 123601 (2006).
[Crossref]

P. S. Huang, C. Zhang, and F.-P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng. 42, 163–168 (2003).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

Opt. Express (1)

Opt. Laser Eng. (2)

S. Zhang, “Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 40, 149–158 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: A review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Opt. Laser. Eng. (1)

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Opt. Lett. (1)

Pattern Recogn. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Other (5)

D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (JohnWiley and Sons, Inc., 1998).

S. Zhang, Advances in measurement systems, chap. 2, pp. 29–50 (In-Tech, 2010).

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in The 8th IEEE International Conference on Computer Vision, pp. II: 359–366 (2001).

M. Takeda, “Measurements of extreme physical phenomena by Fourier fringe analysis,” in AIP Conference Proc., vol. 1236, pp. 445–448 (2010).

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” in Proc. SPIE, vol. 3013, pp. 27–40 (1997).

Supplementary Material (4)

» Media 1: MOV (64 KB)     
» Media 2: MOV (39 KB)     
» Media 3: MOV (672 KB)     
» Media 4: MOV (520 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical switching principle of a digital micromirror device (DMD).

Fig. 2.
Fig. 2.

Example of the projected timing signal if the projector is fed with different grayscale value of the green image. (a) Green = 255; (b) Green = 128; (c) Green = 64.

Fig. 3.
Fig. 3.

Example of sinusoidal fringe generation by defocusing a binary structured patterns. (a) shows the result when the projector is in focus; (b)–(f) show the result when the projector is increasingly defocused. (g)–(l) illustrate the 240 row cross section of the corresponding above image.

Fig. 4.
Fig. 4.

Photograph of the test system.

Fig. 5.
Fig. 5.

Example of sinusoidal fringe generation by defocusing a binary structured patterns. (a) Photograph of the object; (b) Fringe image; (c) Frequency map after Fourier transform; (d) Wrapped phase; (e) Unwrapped phase.

Fig. 6.
Fig. 6.

3-D plot of the measurement result shown in Fig. 5.

Fig. 7.
Fig. 7.

Captured fringe image when a conventional sinusoidal fringe generation technique is used. Top row shows typical frames and bottom row shows one of their cross sections.

Fig. 8.
Fig. 8.

Captured fringe image when the proposed fringe generation technique is used. Top row shows typical frames and bottom row shows one of their cross sections.

Fig. 9.
Fig. 9.

Comparison between the fringe patterns generated by the binary method and the sinusoidal method if they have different exposure time. (a) Sinusoidal method with 1/60 sec exposure time (Media 1); (b) Binary method with 1/60 sec exposure time (Media 2); (c) Sinusoidal method with 1/4,000 sec exposure time (Media 3); (d) Sinusoidal method with 1/4,000 sec exposure time (Media 4).

Fig. 10.
Fig. 10.

Experimental results of measuring the blade of a rotating fan at 1793 rpm. (a) Photograph of the blade; (b) Fringe image; (c) Wrapped phase map; (d) Mask; (e) Unwrapped phase map.

Fig. 11.
Fig. 11.

Capture the rotating fan blade with different exposure time. (a) Fringe pattern (exposure time = 80 µs); (b) Fringe pattern (exposure time = 160 µs); (c) Fringe pattern (exposure time = 320 µs); (d) Fringe pattern (exposure time = 640 µs); (e) Fringe pattern (exposure time = 2,778 µs); (f) Phase map of fringe pattern in (a); (g) Phase map of fringe pattern in (b); (h) Phase map of fringe pattern in (c); (i) Phase map of fringe pattern in (d); (j) Phase map of fringe pattern in (e);

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = a ( x , y ) + b ( x , y ) cos ( ϕ ( x , y ) ) ,
I = a ( x , y ) + b ( x , y ) 2 [ e j ϕ ( x , y ) + e j ϕ ( x , y ) ] .
I f ( x , y ) = b ( x , y ) 2 e j ϕ ( x , y ) .
ϕ ( x , y ) = arctan { Im [ I f ( x , y ) ] Re [ I f ( x , y ) ] } ,

Metrics