Abstract

A new all-oxide design for broadband antireflection coatings with significantly reduced impact of deposition errors to the final reflectance is presented. Computational manufacturing including re-optimization during deposition has been used in the design work to account for maximum insensibility of the design with respect to deposition errors typical for plasma ion assisted deposition PIAD. Repeated deposition runs with the deducted monitoring and re-optimization strategy verify the validity of the simulations and the stability of the derived design solution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Market and Research Report Optical Coatings: Technologies and Global Markets, October 2009, SMC030D, BCC Research, Wellesley, MA USA Web: www.bccresearch.com
  2. A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and their applications,” Appl. Opt. 32(28), 5417–5426 (1993).
    [CrossRef] [PubMed]
  3. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
    [CrossRef] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
    [CrossRef] [PubMed]
  5. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
    [CrossRef] [PubMed]
  6. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
    [CrossRef] [PubMed]
  7. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  8. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
    [CrossRef] [PubMed]
  9. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34(2), 313–321 (1976).
    [CrossRef]
  10. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18(12), 1978–1982 (1979).
    [CrossRef] [PubMed]
  11. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Does Broadband Optical Monitoring Provide an Error Self Compensation Mechanism?”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuC3.
  12. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992).
    [CrossRef] [PubMed]
  13. http://www.optilayer.com
  14. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41(13), 2555–2560 (2002).
    [CrossRef] [PubMed]
  15. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
    [CrossRef] [PubMed]
  16. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
    [CrossRef] [PubMed]
  17. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39(1), 157–167 (2000).
    [CrossRef]
  18. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the Reliability of Computational Estimations Used for Choosing the Most Manufacturable Design”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuA3.
  19. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
    [CrossRef]
  20. A. Duparré and D. Ristau, “Optical interference coatings 2007 measurement problem,” Appl. Opt. 47(13), C179–C184 (2008).
    [CrossRef] [PubMed]
  21. A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifiè quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).
  22. S. Wilbrandt, Dissertation “Online-Monitoring inhomogener optischer Schichtsysteme im visuellen Spektralbereich”, (2006)
  23. V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
    [CrossRef]
  24. A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).
  25. A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003).
    [CrossRef]

2010

2009

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

2008

2007

2006

2005

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

2003

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003).
[CrossRef]

2002

2000

1997

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

1996

1993

1992

1979

1976

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34(2), 313–321 (1976).
[CrossRef]

1947

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifiè quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

Akiyama, T.

Amotchkina, T. V.

Badoil, B.

Bennett, J.

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

Cathelinaud, M.

Clarke, G. A.

Dobrowolski, J. A.

Duparré, A.

Friedrich, K.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

Gäbler, D.

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Girow, P.

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

Günster, S.

Herpin, A.

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifiè quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

Hoffmann, K. H.

Holm, C.

Howe, L.

Janicki, V.

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Kaiser, N.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Kikuchi, K.

Kokarev, M. A.

Lemarchand, F.

Lequime, M.

Matsumoto, A.

McCabe, S.

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

Osborne, N.

Quesnel, E.

Ranger, M.

Ristau, D.

Shuttleworth, A.

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

Song, Y.

Stenzel, O.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Sullivan, B. T.

Tikhonravov, A. V.

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41(13), 2555–2560 (2002).
[CrossRef] [PubMed]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and their applications,” Appl. Opt. 32(28), 5417–5426 (1993).
[CrossRef] [PubMed]

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41(13), 2555–2560 (2002).
[CrossRef] [PubMed]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[CrossRef] [PubMed]

Verly, P. G.

Wilbrandt, S.

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Appl. Opt.

C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18(12), 1978–1982 (1979).
[CrossRef] [PubMed]

B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992).
[CrossRef] [PubMed]

A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and their applications,” Appl. Opt. 32(28), 5417–5426 (1993).
[CrossRef] [PubMed]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[CrossRef] [PubMed]

B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39(1), 157–167 (2000).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41(13), 2555–2560 (2002).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006).
[CrossRef] [PubMed]

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
[CrossRef] [PubMed]

S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[CrossRef] [PubMed]

A. Duparré and D. Ristau, “Optical interference coatings 2007 measurement problem,” Appl. Opt. 47(13), C179–C184 (2008).
[CrossRef] [PubMed]

K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010).
[CrossRef] [PubMed]

C. R. Acad. Sci.

A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifiè quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).

IEE Conf. Publ.

A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).

J. Opt. A, Pure Appl. Opt.

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005).
[CrossRef]

Proc. SPIE

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003).
[CrossRef]

Thin Solid Films

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34(2), 313–321 (1976).
[CrossRef]

Vakuum in Forschung und Praxis

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009).
[CrossRef]

Other

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the Reliability of Computational Estimations Used for Choosing the Most Manufacturable Design”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuA3.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Does Broadband Optical Monitoring Provide an Error Self Compensation Mechanism?”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuC3.

http://www.optilayer.com

Market and Research Report Optical Coatings: Technologies and Global Markets, October 2009, SMC030D, BCC Research, Wellesley, MA USA Web: www.bccresearch.com

S. Wilbrandt, Dissertation “Online-Monitoring inhomogener optischer Schichtsysteme im visuellen Spektralbereich”, (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Interaction among the virtual “control”, “deposition” and “measurement” units in the computational manufacturing procedure. For more details see [8].

Fig. 2
Fig. 2

Refractive index profile (λ = 600 nm) of a 15 layer broadband antireflection coating built up from 3 materials

Fig. 3
Fig. 3

Refractive index profile (λ = 600 nm) of a 12 layer broadband antireflection coating deducted from optimal 2 cluster solution

Fig. 4
Fig. 4

Simulated reflectance (grey lines, no substrate backside) of the broadband antireflection coating with refractive index profile from Fig. 2 in comparison to specification (black line), broadband optical monitoring without re-optimization

Fig. 5
Fig. 5

Observed correlation (correlation coefficient 0.83) between layer thickness d1 of first and d3 of third layer in the case of broadband optical monitoring without re-optimization Designed thicknesses are marked by dashed line. squares: simulation results, full line: linear regression result for simulated points

Fig. 6
Fig. 6

Simulated reflectance (grey lines, no substrate backside) of the broadband antireflection coating with refractive index profile from Fig. 2 in comparison to specification (black line), broadband optical monitoring with re-optimization in layer 14

Fig. 7
Fig. 7

Simulated reflectance (grey lines, no substrate backside) of the broadband antireflection coating with refractive index profile from Fig. 3 in comparison to specification (black line), broadband optical monitoring without re-optimization, large thickness errors in layer 2 always results in violation of the specification

Fig. 8
Fig. 8

Theoretical transmittance after deposition of 30 nm (solid line) and 40 nm (dashed line) SiO2 in layer 2

Fig. 9
Fig. 9

Measured reflectance (with substrate backside) of the broadband antireflection coating with refractive index profile from Fig. 2 in comparison to specification (black line) and reflectance from a single interface of the substrate (dashed line)

Fig. 10
Fig. 10

Measured reflectance of the uncoated substrate (dotted line) and substrate with broadband antireflection coating on one (dashed line) and both sides (solid line), refractive index profile from Fig. 2

Metrics