Abstract

We present a heterodyne measurement of the spectral amplitude and phase of periodic optical signals. In contrast to previous techniques this measurement requires no optical modulation of either the signal or the local oscillator, places much relaxed tunability requirements on the optical local oscillator, and requires no electronic clock to be passed to the receiver. We present measurements of the spectral amplitude and phase of 20 GHz 33% return-to-zero, and 66% carrier-suppressed return-to-zero optical signals, as well as a passively modelocked optical source with in excess of 100 modes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [CrossRef]
  3. V. Wong and I. A. Walmsley, “Analysis of ultrashort pulse-shape measurement using linear interferometers,” Opt. Lett. 19(4), 287–289 (1994).
    [CrossRef] [PubMed]
  4. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998).
    [CrossRef]
  5. J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
    [CrossRef]
  6. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27(15), 1315–1317 (2002).
    [CrossRef]
  7. P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
    [CrossRef]
  8. M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
    [CrossRef]
  9. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24(7), 2487–2494 (2006).
    [CrossRef]
  10. C. Dorrer, D. C. Kilper, H. R. Stuart, and G. Raybon, “Ultra-sensitive optical sampling by coherent-linear detection” Proc. Optical Fiber Communication Conference, FD5 (2002).
  11. C. Dorrer and I. Kang, “Complete temporal characterization of short optical pulses by simplified chronocyclic tomography,” Opt. Lett. 28(16), 1481–1483 (2003).
    [CrossRef] [PubMed]
  12. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
    [CrossRef]
  13. B. Szafraniec, and D. M. Baney, “Swept coherent spectrum analysis of the complex optical field” Proc. Lightwave Technologies in Instrumentation and Measurement Conference 68–72 (2004).
  14. P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16(5), 1379–1381 (2004).
    [CrossRef]

2006

2004

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16(5), 1379–1381 (2004).
[CrossRef]

2003

2002

2000

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

1999

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

1998

1994

Baney, D. M.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Barry, L. P.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Boittin, R.

Bolland, P. G.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Coen, S.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Debeau, J.

DeLong, K. W.

Deparis, O.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Dorrer, C.

Dudley, J. M.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Emplit, Ph.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Essiambre, R. J.

P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16(5), 1379–1381 (2004).
[CrossRef]

Gini, E.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Haelterman, M.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Harvey, J. D.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Hunter, J.

Iaconis, C.

Jäckel, H.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Jiang, Z.

Kang, I.

Kockaert, P.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Kowalski, B.

Kwakernaak, M.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Law, J. Y.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Leaird, D. E.

Lee, A.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Leonhardt, R.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

McAlexander, W. I.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Neiger, A.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Peeters, M.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

Pering, R. D.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Schreieck, R.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Szafraniec, B.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Tan, T. S.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

Thomsen, B. C.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Thomson, M. D.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

Trebino, R.

Vogt, W.

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

Walmsley, I. A.

Weiner, A. M.

White, W. E.

Winzer, P. J.

P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16(5), 1379–1381 (2004).
[CrossRef]

Wong, V.

IEEE J. Quantum Electron.

J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bolland, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35(4), 441–450 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Kockaert, M. Peeters, S. Coen, Ph. Emplit, M. Haelterman, and O. Deparis, “Simple Amplitude and Phase Measuring Technique for Ultrahigh-Repetition-Rate Lasers,” IEEE Photon. Technol. Lett. 12(2), 187–189 (2000).
[CrossRef]

M. Kwakernaak, R. Schreieck, A. Neiger, H. Jäckel, E. Gini, and W. Vogt, “Spectral Phase Measurement of Mode-Locked Diode Laser Pulses by Beating Sidebands Generated by Electrooptical Mixing,” IEEE Photon. Technol. Lett. 12(12), 1677–1679 (2000).
[CrossRef]

P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett. 16(5), 1379–1381 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53(1), 203–215 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Lett.

Other

C. Dorrer, D. C. Kilper, H. R. Stuart, and G. Raybon, “Ultra-sensitive optical sampling by coherent-linear detection” Proc. Optical Fiber Communication Conference, FD5 (2002).

B. Szafraniec, and D. M. Baney, “Swept coherent spectrum analysis of the complex optical field” Proc. Lightwave Technologies in Instrumentation and Measurement Conference 68–72 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral offset between kth and (k + 1)th signal modes, and the local oscillator.

Fig. 2
Fig. 2

Numerical algorithm used to extract the relative power of the kth mode and the phase difference between the kth and the (k+1)th mode of the optical signal under test.

Fig. 3
Fig. 3

Sample RF beat spectrum calculated from a real-time acquisition of the beating between a local oscillator and two adjacent signal modes of a 10 GHz source. Inset: the recovered phase difference.

Fig. 4
Fig. 4

Schematic diagram of the complex optical spectrum analyzer.

Fig. 5
Fig. 5

Temporal and spectral reconstruction of the complex electric field for 20 GHz 33% RZ pulses, and 20 GHz 66% CS-RZ pulses. The blue circles show the reconstructed spectral intensity and phase, the blue lines reconstructed temporal intensity and phase. The red curves show independent measurements of the pulse’s spectral and temporal intensity profiles.

Fig. 6
Fig. 6

Spectral reconstruction of a passively modelocked source: measured directly after source (green circles), and after 220 m of DCF (blue circles). The red traces show the independently measured power spectrum of the source, and a fit to spectral phase using a quadratic dispersion of 30.9 ps2 and a cubic dispersion of 0.24 ps3. Inset is the reconstruction of the temporal amplitude and phase of the pulse before propagation through the DCF.

Fig. 7
Fig. 7

Measured group delay of the 220 m of DCF (blue circles), and the best fit group delay using a quadratic dispersion of 30.9 ps2 and a cubic dispersion of 0.24 ps3 (red line). The difference between these two curves is plotted (green circles) and shows a measured standard error in the group delay of 1.5 ps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s i g ( t ) = m = N N ( P m exp ( j m Ω t + j ϕ m ) ) exp ( j ω s t + j ϕ s ( t ) )
V s i g ( t ) P L O P k cos ( δ t + ϕ L O ( t ) ϕ s ( t ) ϕ k ) + P L O P k + 1 cos ( ( Ω δ ) t ϕ L O ( t ) + ϕ s ( t ) + ϕ k + 1 ) + m = N N 1 P m P m + 1 cos ( Ω t + ϕ m + 1 ϕ m ) + DC terms + frequencies higher than Ω

Metrics