Abstract

We report an experimental demonstration of slow and superluminal propagation of pseudo-thermal (chaotic) light in the Λ-type system of the 5S1/2–5P1/2 transition of 87Rb atom. The slowed propagation of pulsed pseudo-thermal light was demonstrated in an electromagnetically-induced transparency medium while the superluminal propagation was demonstrated with the enhanced absorption scheme where the coupling field takes the form of a standing wave. We have also demonstrated that the photon number statistics of the pseudo-thermal light is preserved for both the subluminal and superluminal cases.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
    [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
    [CrossRef]
  3. K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
    [CrossRef]
  4. H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
    [CrossRef]
  5. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  6. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  7. Y.-W. Cho, and Y.-H. Kim, "Storage and Retrieval of Thermal Light in Warm Atomic Vapor," eprint arXiv:0910.0074 (2009).
  8. S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
    [CrossRef]
  9. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
    [CrossRef] [PubMed]
  10. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
    [CrossRef] [PubMed]
  11. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
    [CrossRef] [PubMed]
  12. R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
    [CrossRef]
  13. I. H. Bae, H. S. Moon, M. K. Kim, L. Lim, and J. B. Kim, "Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell," Opt. Express 18, 1389-1397 (2010).
    [CrossRef] [PubMed]
  14. H. S. Moon, S. E. Park, Y.-H. Park, L. Lim, and J. B. Kim, "Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers," J. Opt. Soc. Am. B 23, 2393-2397 (2006).
    [CrossRef]
  15. F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912-916 (1965).
    [CrossRef]
  16. R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956).
    [CrossRef]
  17. M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
    [CrossRef]
  18. L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. Lond. 74, 233 (1959).
    [CrossRef]
  19. R. Loudon, "The Quantum Theory of Light," The Quantum Theory of Light (Oxford University Press) (2000).

2010 (1)

2007 (1)

R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

2006 (1)

2004 (1)

H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
[CrossRef]

2003 (2)

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
[CrossRef]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

2000 (1)

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1995 (1)

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

1993 (1)

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
[CrossRef] [PubMed]

1982 (1)

S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

1965 (1)

F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912-916 (1965).
[CrossRef]

1959 (1)

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. Lond. 74, 233 (1959).
[CrossRef]

1956 (1)

R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956).
[CrossRef]

Arecchi, F. T.

F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912-916 (1965).
[CrossRef]

Bae, I. H.

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

Boyd, R. W.

R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
[CrossRef] [PubMed]

Chu, S.

S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Gauthier, D. J.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Hanbury-Brown, R.

R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956).
[CrossRef]

Harris, M.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
[CrossRef]

Hill, C. A.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Holberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
[CrossRef]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Kim, J. B.

Kim, K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kim, M. K.

Kim, S. K.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
[CrossRef] [PubMed]

Lee, C.

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
[CrossRef]

Lim, L.

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Mandel, L.

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. Lond. 74, 233 (1959).
[CrossRef]

Moon, H. S.

Narum, P.

R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

Neifeld, M. A.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Park, S. E.

Park, Y.-H.

Pearson, G. N.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
[CrossRef] [PubMed]

Stenner, M. D.

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

Twiss, R. Q.

R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956).
[CrossRef]

Vaughan, J. M.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

Wong, S.

S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
[CrossRef]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

J. Mod. Opt. (1)

R. W. Boyd, and P. Narum, "Slow- and fast-light: fundamental limitations," J. Mod. Opt. 54, 2403-2411 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (4)

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003).
[CrossRef] [PubMed]

R. Hanbury-Brown, and R. Q. Twiss, "Correlation between Photons in two Coherent Beams of Light," Nature 177, 27-29 (1956).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-597 (1999).
[CrossRef]

Opt. Commun. (1)

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

K. Kim, H. S. Moon, C. Lee, S. K. Kim, and J. B. Kim, "Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line," Phys. Rev. A 68, 013810 (2003).
[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, "Superluminal and slow light propagation in cold atoms," Phys. Rev. A 70, 011801 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Holberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas," Phys. Rev. Lett. 82, 5229-5232 (1999).
[CrossRef]

S. Chu, and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1982).
[CrossRef]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett. 71, 708-711 (1993).
[CrossRef] [PubMed]

F. T. Arecchi, "Measurement of the Statistical Distribution of Gaussian and Laser Sources," Phys. Rev. Lett. 15, 912-916 (1965).
[CrossRef]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Proc. Phys. Soc. Lond. (1)

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. Lond. 74, 233 (1959).
[CrossRef]

Other (2)

R. Loudon, "The Quantum Theory of Light," The Quantum Theory of Light (Oxford University Press) (2000).

Y.-W. Cho, and Y.-H. Kim, "Storage and Retrieval of Thermal Light in Warm Atomic Vapor," eprint arXiv:0910.0074 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) (a) 5S1/2–5P1/2 transition of 87Rb atom is used as the Λ-type atomic system. (b) Schematic diagram of the experiment. Pseudo-thermal light is generated by focusing the probe laser on the rotating disk (RD). AOM1 is then used to make a pseudo-thermal light pulse. AOM2 is used for compensating the frequency shift due to AOM1. (BS: beam splitter, D1: Photo-current detecter, D2: Single-photon counting detector, HWP: half-wave plate, PBS: polarization beam splitter, AOM: acousto-optic modulator).

Fig. 2.
Fig. 2.

The measured EIT and EA transmission spectra for the laser probe, (a), and the thermal light probe, (b), as a function of probe frequency. For the EIT spectra, a single co-propagating coupling laser is used and for the EA effect, an additional counter-propagating coupling laser forms the standing-wave coupling field. For laser probe, (a), the linewidths of EIT and EA are measured to be 1.5 MHz and 3 MHz, respectively. For thermal light probe, (b), they are 2 MHz and 3 MHz, respectively.

Fig. 3.
Fig. 3.

(Color online) The superluminal and subluminal pulses generated from (a) the laser probe and from (b) the thermal probe. The reference pulse is measured with the coupling field turned off. For the laser probe, (a), the superluminal and subluminal pulses are, respectively, 70 ± 0.06 ns advanced and 45 ± 0.03 ns delayed with respect to the reference pulse. For the thermal probe, (b), superluminal and subluminal pulses are, respectively, a 27 ± 0.08 ns advanced and a 30 ± 0.09 ns delayed with respect to the reference pulse. The advance and delay times are measured by comparing the peak positions of the pulses.

Fig. 4.
Fig. 4.

(Color online) Photon number statistics in the cases of (I) superluminal pulse propagation in the enhanced absorption condition, (II) ordinary pulse propagation the linear absorption regime with the coupling field turned off, and (III) subluminal pulse propagation in the EIT condition. The left column, (a), shows the results for the laser probe pulse and the right column, (b), shows the result for the thermal probe pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P coh ( n ) = n ¯ n n ! exp [ n ¯ ] ,
P th ( n ) = n ¯ n ( 1 + n ¯ ) 1 + n .
g ( 2 ) = 1 + ( ( Δ n ) 2 n ¯ ) n ¯ 2 ,

Metrics