Abstract

In this paper, the phase detection properties of a grating-coupled surface plasmon resonance (GCSPR) sensor with a thin metal film on the grating structure has been studied by performing finite-difference time-domain simulation first. Both the metal film thickness and modulation height of the grating considerably affect the phase detection properties of GCSPR sensors. The manner in which the metal film thickness affects the phase curve in the grating-coupled configuration is slightly different from that in the conventional prism-coupled surface plasmon resonance (PCSPR) configuration. For experiment, an electro-optic heterodyne interferometer is used to perform phase detection of the GCSPR sensor and a refractive index resolution of 1.5 × 0−6 RIU are obtained. The results reveal that the phase detection sensitivity of the GCSPR sensor may be comparable to that of the PCSPR sensor.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings( Springer-Verlag, 1988).
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
    [CrossRef]
  3. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
    [CrossRef]
  4. S. Shen, T. Liu, and J. Guo, “Optical phase-shift detection of surface plasmon resonance,” Appl. Opt. 37(10), 1747–1751 (1998).
    [CrossRef]
  5. P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
    [CrossRef]
  6. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  7. Y. D. Su, S.-J. Chen, and T.-L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
    [CrossRef] [PubMed]
  8. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [CrossRef] [PubMed]
  9. D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
    [CrossRef]
  10. P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
    [CrossRef]
  11. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
    [CrossRef]
  12. C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
    [CrossRef] [PubMed]
  13. J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
    [CrossRef]
  14. N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
    [CrossRef]
  15. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
    [CrossRef]
  16. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  17. K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
    [CrossRef]
  18. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

2006 (1)

2005 (2)

Y. D. Su, S.-J. Chen, and T.-L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
[CrossRef] [PubMed]

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
[CrossRef]

2004 (1)

2002 (1)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

1999 (4)

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
[CrossRef]

1998 (1)

1996 (2)

C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
[CrossRef] [PubMed]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
[CrossRef]

1992 (1)

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
[CrossRef]

1988 (1)

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Beloglazov, A. A.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

Brown, R. G. W.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
[CrossRef]

Bryan-Brown, G. P.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Chen, K. H.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Chen, S.-J.

Cullen, D. C.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
[CrossRef]

Dostalek, J.

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
[CrossRef]

Furlong, D. N.

C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[CrossRef]

Geddes, N. J.

C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[CrossRef] [PubMed]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
[CrossRef]

Guo, J.

Ho, H. P.

Homola, J.

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
[CrossRef]

Hsu, C. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17(23), 21191–21204 (2009).
[CrossRef] [PubMed]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
[CrossRef]

Kochergin, V. E.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

Kong, S. K.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
[CrossRef]

Ksenevich, T. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

Künnemeyer, R.

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

Law, W. C.

Lawrence, C. R.

C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
[CrossRef] [PubMed]

Lin, C.

Lipson, S. G.

Liu, T.

Lowe, C. R.

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
[CrossRef]

Miler, M.

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
[CrossRef]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
[CrossRef]

Nikitin, P. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
[CrossRef]

Patskovsky, S.

Ran, B.

Sambles, J. R.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
[CrossRef]

Sedoglavich, N.

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

Sharpe, J. C.

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

Shen, S.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Su, D. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Su, Y. D.

Talele, S. R.

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Valeiko, M. V.

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

Vukusic, P. S.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
[CrossRef]

Wu, S. Y.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
[CrossRef]

Yeh, T.-L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

C. R. Lawrence, N. J. Geddes, and D. N. Furlong, “Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings,” Biosens. Bioelectron. 11(4), 389–400 (1996).
[CrossRef] [PubMed]

Biosensors (1)

D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988).
[CrossRef]

Curr. Appl. Phys. (1)

N. Sedoglavich, R. Künnemeyer, S. R. Talele, and J. C. Sharpe, “Phase- polarisation contrast for surface plasmon resonance based on low cost grating substrate,” Curr. Appl. Phys. 8(3-4), 351–354 (2008).
[CrossRef]

Opt. Commun. (1)

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polarition-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Sens. Actuators B (6)

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B 107(1), 154–161 (2005).
[CrossRef]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B 8(2), 155–160 (1992).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54(1-2), 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996).
[CrossRef]

P. I. Nikitin, A. A. Beloglazov, V. E. Kochergin, M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54(1-2), 43–50 (1999).
[CrossRef]

Other (1)

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings( Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Calculation results of reflectivity and phase curves of reflective light versus the incident angle for a PCSPR sensor with different metal film thickness (a) d = 35 nm, 40 nm, 45 nm. (b) d = 55 nm, 60 nm, 65 nm.

Fig. 2
Fig. 2

Schematic of the GCSPR sensor structure.

Fig. 3
Fig. 3

Calculation results of reflectivity and phase curves of reflective light versus the incident angle for a GCSPR sensor with a fixed modulation height h = 70 nm and different metal film thickness (a) d = 15 nm, 20 nm, 25 nm. (b) d = 30 nm, 40 nm, 50 nm.

Fig. 4
Fig. 4

Calculation results of reflectivity and phase curves of reflective light versus the incident angle for a GCSPR sensor with a fixed metal film thickness d = 70 nm and different modulation height (a) h = 30 nm, 35 nm, 40 nm. (b) d = 50 nm, 60 nm, 70 nm.

Fig. 5
Fig. 5

Calculated optimal metal (Au) film thicknesses for four different modulation heights.

Fig. 6
Fig. 6

AFM image of the polymer grating structure fabricated by the nanoimprinting technology.

Fig. 7
Fig. 7

Schematic of intensity and phase detection system based on the electro-optic heterodyne interferometer.

Fig. 8
Fig. 8

Calculation results of the intensity (a) and the phase (b) versus the incident angle varying from 43.5° to 54° for four GCSPR sensors coating with different gold film thickness, 38 nm, 40 nm, 45 nm, and 50 nm.

Fig. 9
Fig. 9

Measurement results of the intensity (a) and the phase (b) versus the incident angle varying from 43° to 45.5° for four GCSPR sensors coating with different gold film thickness, from 35 nm to 50 nm in 5 nm steps.

Fig. 10
Fig. 10

(a) Time evolutions of phase changes for 40- and 45-nm-thick gold film sensors when liquids with different refractive indices present in the tank. (b) A piece of time evolution interval (t = 220 s to 280 s) of the 40-nm-thick gold film sensor in (a). The slow phase variation may be due to the temperature fluctuation and the statistical error phase during this interval is about 0.5°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k l = ω c ε d sin θ + n 2 π Λ ,        n = ± 1 , ± 2 , ± 3... ,
ω c ε d sin θ + n 2 π Λ = ω c ε d ε m ε d + ε m ,

Metrics