Abstract

We analyze metal-clad disk cavities designed for nanolasers in the visible red spectrum with subwavelength device size and mode volume. Metal cladding suppresses radiation loss and supports low order modes with room temperature Q of 200 to 300. Non-degenerate single-mode operation with enhanced spontaneous emission coupling factor β is expected with the TE011 mode that has a 0.46(λ 0/n)3 mode volume and Q = 210 in a device of size 0.12λ 3 0. Threshold gain calculations show that room temperature lasing is possible using multiple GaInP/AlGaInP quantum wells as the gain medium. Placing a planar metal reflector under the cavity can enhance radiation and extraction efficiencies or increase the Q, without incurring additional metallic absorption loss. We show that the far-field radiation characteristics are strongly affected by the devices’ immediate surroundings, such as changes in metal cladding thickness, even as the resonant mode profile, frequency, and Q remain the same. When the metal cladding is 1 µm thick, light radiates upward with a distinct intensity maximum at 45°; when the cladding is 100 nm thick, the emitted light spreads in a near-horizontal direction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166-1185 (2009)
    [CrossRef]
  2. M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
    [CrossRef]
  3. S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seessal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008)
    [CrossRef] [PubMed]
  4. S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008)
    [CrossRef] [PubMed]
  5. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946)
  6. J.-M. Gérard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999)
    [CrossRef]
  7. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007)
    [CrossRef] [PubMed]
  8. T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
    [CrossRef]
  9. H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
    [CrossRef]
  10. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
    [CrossRef] [PubMed]
  11. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
    [CrossRef]
  12. K. Yu, A. Lakhani, and M. C. Wu, "Subwavelength metal-optic semiconductor nanopatch lasers," Opt. Express 18, 8790-8799 (2010)
    [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
    [CrossRef] [PubMed]
  14. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
    [CrossRef]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)
  16. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
    [CrossRef]
  17. D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids I, E. D. Palik, eds., (Academic, San Diego, Calif., 1998), pp. 275-367.
  18. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
    [CrossRef]
  19. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006)
    [CrossRef]
  20. A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007)
    [CrossRef]
  21. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
    [CrossRef]
  22. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007)
    [CrossRef] [PubMed]
  23. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
    [CrossRef]
  24. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982)
    [CrossRef]
  25. K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003)
    [CrossRef]
  26. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006)
    [CrossRef] [PubMed]
  27. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). Erratum, ibid. 109, 4128 (1998).
    [CrossRef]
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005)
  29. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997)
    [CrossRef]
  30. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
    [CrossRef]
  31. C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
    [CrossRef] [PubMed]
  32. S.-W. Chang and S. L. Chuang, "Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media," Opt. Lett. 34, 91-93 (2009)
    [CrossRef]
  33. S.-W. Chang and S. L. Chuang, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron. 45, 1014-1023 (2009)
    [CrossRef]
  34. S.-W. Chang, T.-R. Lin, and S. L. Chuang, "Theory of plasmonic fabry-perot nanolasers," Opt. Express 18, 15039-15053 (2010)
    [CrossRef] [PubMed]
  35. H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
    [CrossRef]
  36. W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
    [CrossRef]
  37. G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
    [CrossRef]
  38. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
    [CrossRef] [PubMed]
  39. E. F. Schubert. Y.-H.Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992)
    [CrossRef]
  40. H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
    [CrossRef]
  41. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006)
    [CrossRef]
  42. R. A. Matula, "Electrical resistivity of copper, gold, palladium, and silver," J. Phys. Chem. Ref. Data 8, 1147(1979)
    [CrossRef]
  43. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

2010 (3)

2009 (6)

S.-W. Chang and S. L. Chuang, "Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media," Opt. Lett. 34, 91-93 (2009)
[CrossRef]

S.-W. Chang and S. L. Chuang, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron. 45, 1014-1023 (2009)
[CrossRef]

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166-1185 (2009)
[CrossRef]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

2008 (3)

2007 (6)

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007)
[CrossRef] [PubMed]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007)
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007)
[CrossRef] [PubMed]

2006 (5)

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006)
[CrossRef] [PubMed]

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006)
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006)
[CrossRef]

2005 (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

2004 (1)

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

2003 (3)

M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003)
[CrossRef]

1999 (1)

1998 (1)

H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
[CrossRef]

1997 (2)

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997)
[CrossRef]

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

1994 (2)

G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
[CrossRef]

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

1992 (1)

E. F. Schubert. Y.-H.Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992)
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982)
[CrossRef]

1979 (1)

R. A. Matula, "Electrical resistivity of copper, gold, palladium, and silver," J. Phys. Chem. Ref. Data 8, 1147(1979)
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946)

Adachi, S.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
[CrossRef]

Arakawa, Y.

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982)
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Atwater, H. A.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
[CrossRef]

Baba, T.

S. Kita, K. Nozaki, and T. Baba, "Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration," Opt. Express 16, 8174-8180 (2008)
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007)
[CrossRef] [PubMed]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003)
[CrossRef]

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997)
[CrossRef]

Benisty, H.

H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
[CrossRef]

Bermel, P.

Blood, P.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007)
[CrossRef] [PubMed]

Burr, G.

Cao, H.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

Chang, S.-W.

Choi, J.-H.

Chow, W. W.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
[CrossRef]

Chuang, S. L.

de Abajo, F. J. G.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
[CrossRef]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Englund, D.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
[CrossRef]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
[CrossRef] [PubMed]

Farjadpour, A.

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
[CrossRef] [PubMed]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

Gayral, B.

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Gérard, J.-M.

Girndt, A.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

Harder, C.

G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
[CrossRef]

Hill, M. T.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Ho, S. T.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

Hofmann, C. E.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

Hong, T.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007)
[CrossRef]

Hunziker, G.

G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
[CrossRef]

Ibanescu, M.

Inoshita, K.

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003)
[CrossRef]

Jahnke, F.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
[CrossRef]

Johnson, S. G.

Karouta, F.

Kato, H.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

Kim, S.-H.

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006)
[CrossRef]

Kita, S.

Knop, W.

G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
[CrossRef]

Koch, S. W.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006)
[CrossRef]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Lakhani, A.

Lee, S.-K.

Lee, Y.-H.

S.-H. Kim, J.-H. Choi, S.-K. Lee, S.-H. Kim, S.-M. Yang, Y.-H. Lee, C. Seessal, P. Regrency, and P. Viktorovitch, "Optofluidic integration of a photonic crystal nanolaser," Opt. Express 16, 6515-6527 (2008)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006)
[CrossRef]

Leong, E. S. P.

Lezec, H. J.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

Lin, T.-R.

Liu, V.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
[CrossRef] [PubMed]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
[CrossRef]

Marell, M.

Massoud, Y.

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007)
[CrossRef]

Matula, R. A.

R. A. Matula, "Electrical resistivity of copper, gold, palladium, and silver," J. Phys. Chem. Ref. Data 8, 1147(1979)
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

Miller, D. A. B.

D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166-1185 (2009)
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006)
[CrossRef]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
[CrossRef] [PubMed]

N¨otzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Nakanishi, H.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

Neve, H. D.

H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)
[CrossRef] [PubMed]

Ning, C.-Z.

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Notzel, R.

Nozaki, K.

Oei, Y.-S.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Ohtsuka, K.

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

Polman, A.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946)

Qiu, Y. M.

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
[CrossRef]

Regrency, P.

Rodriguez, A.

Roundy, D.

Sakaki, H.

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982)
[CrossRef]

Scherer, A.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
[CrossRef]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

Schubert, E. F.

E. F. Schubert. Y.-H.Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992)
[CrossRef]

Seessal, C.

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

Slutsky, B. A.

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Smit, M. K.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Smowton, P. M.

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

Solomon, G. S.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Song, Q.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

Sun, M.

Sweatlock, L. A.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Vahala, K.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

van Otten, F.W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Vesseur, E. J. R.

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

Viktorovitch, P.

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007)
[CrossRef] [PubMed]

Weisbuch, C.

H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
[CrossRef]

Wu, M. C.

Yang, L.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

Yang, S.-M.

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

Yoshie, T.

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

Yu, K.

Zhang, Z.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express 17, 11107-11112 (2009)
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Appl. Phys. Lett. (11)

M. Lončar, A. Scherer, and Y. M. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003)
[CrossRef]

T. Yoshie, M. Lončar, A. Scherer, and Y. M. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004)
[CrossRef]

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, "Near-IR subwavelength microdisk lasers," Appl. Phys. Lett. 94, 061109 (2009)
[CrossRef]

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86, 251101 (2005)
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009)

H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006)
[CrossRef]

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007)
[CrossRef]

Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982)
[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, "Visible submicron microdisk lasers," Appl. Phys. Lett. 90, 111119 (2007)
[CrossRef]

W. W. Chow, P. M. Smowton, P. Blood, A. Girndt, F. Jahnke, and S. W. Koch, "Comparison of experimental and theoretical GaInP quantum well gain spectra," Appl. Phys. Lett. 71, 157-159 (1997)
[CrossRef]

E. F. Schubert. Y.-H.Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992)
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Benisty, H. D. Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction—part i: basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998)
[CrossRef]

S.-W. Chang and S. L. Chuang, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron. 45, 1014-1023 (2009)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997)
[CrossRef]

K. Inoshita and T. Baba, "Fabrication of GaInAsP/InP photonic crystal lasers by ICP etching and control of resonant mode in point and line composite defects," IEEE J. Sel. Top. Quantum Electron. 9, 1347-1354 (2003)
[CrossRef]

IEEE Trans. Quantum Electron. (1)

G. Hunziker, W. Knop, and C. Harder, "Gain measurement on one, two, and three strained GaInP quantum well laser diodes," IEEE Trans. Quantum Electron. 30, 2235-2238 (1994)
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. Ref. Data (1)

R. A. Matula, "Electrical resistivity of copper, gold, palladium, and silver," J. Phys. Chem. Ref. Data 8, 1147(1979)
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Kato, S. Adachi, H. Nakanishi, and K. Ohtsuka, "Optical properties of (AlxGa1-x)0:5In0:5P quaternary alloys," Jpn. J. Appl. Phys. 33, 186-192 (1994)
[CrossRef]

Nano Lett. (2)

C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock, H. J. Lezec, F. J. G. de Abajo, A. Polman, and H. A. Atwater, "Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence," Nano Lett. 7, 3612-3617 (2007)
[CrossRef] [PubMed]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, "Submicrometer in-plane integrated surface plasmon cavities," Nano Lett. 7, 1352-1359 (2007)
[CrossRef] [PubMed]

Nat. Photonics (2)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, "Roomtemperature subwavelength metallo-dielectric lasers," Nat. Photonics 4, 395-399 (2010)
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. N¨otzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007)
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006)
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003)
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972)
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006)
[CrossRef]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006)
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, "Device Requirements for Optical Interconnects to Silicon Chips," Proc. IEEE 97, 1166-1185 (2009)
[CrossRef]

Other (4)

D. W. Lynch and W. R. Hunter, "Comments on the optical constants of metals and an introduction to the data for several metals," in Handbook of Optical Constants of Solids I, E. D. Palik, eds., (Academic, San Diego, Calif., 1998), pp. 275-367.

V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). Erratum, ibid. 109, 4128 (1998).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Artech House, Norwood, 2005)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Resonant modes for various disk diameters, the dotted red line indicates λ 0 = 670 nm resonant wavelength; (b) Q-factors for various disk diameters at λ 0 ≈ 670 nm: d 0 = 210 nm gives TE311 with λ 0 = 667 nm and Q = 95, d 0 = 260 nm gives TE411 with λ 0 = 682 nm and Q = 545, d 0 = 300 nm gives TE511 with λ 0 = 677 nm and Q = 2750, and d 0 = 340 nm gives TE611 with λ 0 = 675 nm and Q = 12105.

Fig. 2.
Fig. 2.

(a) 3D schematic and sideview cross-section of the silver-clad disk cavity, the origin of the coordinate system is located at the center of the dielectric disk; (b)–(e) Electricfield intensity distribution ∣E2 of resonant modes in a d 0 = 420 nm cavity: m = 0 (TE021, λ 0 = 642 nm, Q = 240), m = 1 (TE122, λ 0 = 660 nm, Q = 160), m = 2 (TE221, λ 0 = 676 nm, Q = 230), and m = 3 (TE311, λ 0 = 675 nm, Q = 290), respectively. Field maximum is at z = 0 for m = 0,2,3 and at z ≈ ±t/4 for m = 1. White circle indicates the dielectric-silver interface.

Fig. 3.
Fig. 3.

Electric-field intensity distribution ∣E2 of modes in a d 0 = 220 nm cavity: TE011 mode at (a) the horizontal center plane z = 0 and (b) the vertical center plane of the disk, λ 0 = 663 nm; surface plasmon (SP) mode at (c) the horizontal z = 80 nm plane and (d) the vertical center plane through field intensity maxima, λSP = 675 nm. White lines indicate material interfaces.

Fig. 4.
Fig. 4.

Effect of the bottom reflector on radiation characteristics: (a) Schematic of device structure, the origin of the coordinate system is located at the center of the ε = 11 dielectric disk; (b) electric-field intensity distribution ∣E2 of the TE011 mode in a d 0 = 220 nm resonator with a Ag bottom reflector and h = 0; Q-factor decomposition (Qtot , Qrad , and Qabs ) and ηrad for different oxide thicknesses h at (c) room temperature, (d) 80 K, and (e) 30 K, plotted on the same scale for comparison. Upper and lower dotted orange lines indicate Qrad for a suspended metal-clad disk laser and for one on a SiO2 substrate, respectively, both without a bottom reflector. Upper and lower dotted green lines indicate ηrad for a metal-clad disk laser on SiO2 substrate and for one suspended in air, respectively.

Fig. 5.
Fig. 5.

(a) Geometry used to calculate far-field radiation patterns. The infinite hemispherical domain is located just above the laser cavity’s top surface. Far-field radiation pattern is calculated on the dome in the limit of R → ∞. Polarization directions θ and φ are shown. (b) Total and polarization filtered far-field radiation patterns, ∣E tot 2, ∣Eθ 2, and ∣Eφ 2, of the TE011 mode in a d 0 = 220 nm laser cavity. (c) Laser radiation sideview and the corresponding total far-field radiation patterns of the TE011 mode in d 0 = 220 nm metal-clad disk cavities with different Ag cladding thicknesses w = 100 nm, 200nm, 300nm, and 1 µm. White lines in radiation sideviews denotes material interface. Dotted white circles on far-field radiation patterns denote 30°, 60°, 90° from surface normal.

Tables (1)

Tables Icon

Table 1. Comparative characteristics of metal-clad disk modes

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε Ag ( ω ) = ε h ( ε s ε h ) ω p 2 ω 2 + i ω γ
η rad P rad P tot = 1 Q rad 1 Q tot
F p = 3 Q ( λ 0 n ) 3 4 π 2 V eff
V eff = V ( ( ω ε ) ω + ε R ) E 2 dV max [ ( ( ω ε ) ω + ε R ) E 2 ] .
g th = ω 0 Qv g , a ( ω 0 ) Γ E
Γ E = Va ε 0 4 { ε g , a ( ω 0 ) + [ ε a ( ω 0 ) ] } E 2 dV V ε 0 4 { ε g ( r ) , ω 0 ) + [ ε ( r , ω 0 ) ] } E 2 dV

Metrics