Abstract

Optical simulations of 1D digital plasmonic gratings on a Silicon substrate are performed by means of the Finite Elements Method and a modal analysis. The different mechanisms of transmission of the light are elucidated. The absorption profile in Silicon can be modulated and controlled changing the geometry. Configuration maps allow to determine the different optical regimes. Surface Plasmon Polaritons and cavity-mode resonances are shown to be effectively exploitable to enhance NIR-light absorption in different shallower regions of the underlying Silicon.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rather, Surface Plasmons (Springer-Verlag, 1988).
  2. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [CrossRef] [PubMed]
  3. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  5. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  6. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [CrossRef]
  7. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006).
    [CrossRef]
  8. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  10. L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, 1984), pp. 272–6.
  11. B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
    [CrossRef]
  12. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  13. F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
    [CrossRef]
  14. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365–2373 (2005).
    [CrossRef]
  15. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [CrossRef]
  16. F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
    [CrossRef]
  17. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  18. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [CrossRef] [PubMed]
  19. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
    [CrossRef]
  20. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  21. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [CrossRef]
  22. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006).
    [CrossRef] [PubMed]
  23. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  24. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
    [CrossRef] [PubMed]

2010 (1)

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
[CrossRef]

2009 (4)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[CrossRef] [PubMed]

2008 (2)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
[CrossRef] [PubMed]

2006 (4)

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006).
[CrossRef] [PubMed]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006).
[CrossRef]

2005 (2)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365–2373 (2005).
[CrossRef]

F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[CrossRef] [PubMed]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

2001 (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Barnard, E. S.

Brongersma, M. L.

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Chandran, A.

Collin, S.

Crouse, D.

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006).
[CrossRef]

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365–2373 (2005).
[CrossRef]

Currie, M.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

García-Vidal, F. J.

F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

Gorkunov, M.

B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Greffet, J. J.

Grote, R.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006).
[CrossRef]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Mansuripur, M.

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Marquier, F.

Martin-Moreno, L.

F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Medina, F.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
[CrossRef]

Mesa, F.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
[CrossRef]

Moloney, J. V.

Nabet, B.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

Osgood, R. M.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Panoiu, N. C.

Pardo, F.

Pelouard, J. L.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Podivlov, E.

B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Shackleford, J. A.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

Skigin, D. C.

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
[CrossRef]

Spanier, J. E.

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

Sturman, B.

B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Veronis, G.

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

White, J. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xie, Y.

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Yu, Z.

Zakharian, A. R.

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron. Dev. 52(11), 2365–2373 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

F. Medina, F. Mesa, and D. C. Skigin, “Extraordinary optical transmission through arrays of slits: a circuit theory model,” IEEE Trans. Microw. Theory Tech. 58(1), 105–115 (2010).
[CrossRef]

J. Appl. Phys. (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface Plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A, Pure Appl. Opt. 8(2), 175–181 (2006).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

F. J. García-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002).
[CrossRef]

R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[CrossRef]

B. Sturman, E. Podivlov, and M. Gorkunov, “Theory of extraordinary light transmission through arrays of subwavelength slits,” Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009).
[CrossRef]

Other (3)

H. Rather, Surface Plasmons (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, 1984), pp. 272–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Sketch of the model.

Fig. 2
Fig. 2

(Color online) Magnetic field norm enhancements. (a) h = 184nm, d = 340nm: CM-resonance; (b) h = 161nm, d = 710nm: SPP-CM resonance; (c) h = 175nm, d = 278nm: WR-CM resonance.

Fig. 3
Fig. 3

(Color online) FEM-calculated transmittance (a) and absorption enhancement (b) map within 300nm in Silicon with respect to perfect AR-coated Silicon. Overplotted black and grey lines mark respectively CM and SPP resonances according to the analytical model. White lines mark configurations which present a WR anomaly. Crosses mark configurations whose absorption profile is reported in Fig. 4.a.

Fig. 4
Fig. 4

(a) Absorption profile enhancement with respect to perfect AR-coated Silicon in configurations marked with crosses in Fig. 3: h = 136nm,d = 765nm (light gray); h = 148nm,d = 735 (medium gray); h = 163nm, d = 705nm (black); inset: absorption profiles within 1μm depth. (b) Absorption profile enhancement in configurations near the cross in Fig. 5: h = 175nm and d respectively 285nm (black), 300nm (medium gray), 320nm (light gray). Black dots and circles represent the contributions to the whole black absorption profile coming from the n = ± 1 and n = 0 diffraction orders respectively.

Fig. 5
Fig. 5

(color online) (a) Absorption enhancement within 40µm in Silicon with respect to Silicon treated with perfect AR coating. Overplotted lines are defined as in Fig. 3. (b) Left: Extinction length of the absorption profiles calculated in CM-resonant configurations (hCM(d),d); right: absorption within L with grating normalized to absorption within the same L in case of perfect AR-coated Silicon. Grey horizontal lines and circles mark respectively SPP-resonant periods and WR anomalies.

Fig. 6
Fig. 6

Gray: Extinction length of the absorption profile for different duty cycle values; black: absorption within L normalized to absorption within the same L in case of perfect AR-coated Silicon. Dash-dotted and dashed lines are the contribution to QL from the n = 0 and n = ± 1 diffraction orders respectively. h and d are set to 145nm and 280nm respectively. The set of parameters h = 145, d = 280, duty cycle = 0.2 was found to optimize the absorption enhancement within 40µm ( + 210%).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = 1 ε 3 | τ 12 | 2 i = + cos θ i | τ 23 , i 2 | 2 | 1 | ρ 12 | | ρ 23 | e i ϕ t o t | 2 ,
ϕ t o t = arg ( ρ 12 ) + arg ( ρ 23 ) + 2 k 0 N e f f h ,
k 0 sin α + n G = k 0 Re ( ε ε m / ( ε + ε m ) )             n = 1 , 2...

Metrics