Abstract

High Q traveling-wave resonators (TWR)s are one of the key building block components for VLSI Photonics and photonic integrated circuits (PIC). However, dense VLSI integration requires small footprint resonators. While photonic crystal resonators have shown the record in simultaneous high Q (~105-106) and very small mode volumes; the structural simplicity of TWRs has motivated many ongoing researches on miniaturization of these resonators with maintaining Q in the same range. In this paper, we investigate the scaling issues of silicon traveling-wave microresonators down to ultimate miniaturization levels in SOI platforms. Two main constraints that are considered during this down scaling are: 1) Preservation of the intrinsic Q of the resonator at high values, and 2) Compatibility of resonator with passive (active) integration by preserving the SiO2 BOX layer (plus a thin Si slab layer for P-N junction fabrication). Microdisk and microdonut (an intermediate design between disk and ring shape) are considered for high Q, miniaturization, and single-mode operation over a wide wavelength range (as high as the free-spectral range). Theoretical and experimental results for miniaturized resonators are demonstrated and Q's as high as ~105 for resonators as small as 1.5 μm radius are achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Silicon photonics: An exercise in self control,” Nat. Photonics 1(1), 18–19 (2007).
    [CrossRef]
  2. C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  4. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
    [CrossRef]
  5. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [CrossRef]
  6. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  7. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
    [CrossRef] [PubMed]
  8. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, Ultra-low power silicon microdisk modulators and switches,” IEEE Conf. Group IV Photonics, Sorento, Italy, 2008.
  9. S. Manipatruni, L. Chen, K. Preston, and M. Lipson, “Ultra-low power electro-optic modulator on silicon: towards direct logic driven silicon modulators,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.
  10. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Ultimate miniaturization of single and coupled resonator filters in silicon photonics,” Conference on Laser and Electro-optics (CLEO), Baltimore, MD, 2009.
  11. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
    [CrossRef]
  12. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
    [CrossRef]
  13. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [CrossRef] [PubMed]
  14. M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” IEEE LEOS Conference, Turkey, 2009.
  15. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  16. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
    [CrossRef] [PubMed]
  17. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  18. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007).
    [CrossRef] [PubMed]
  19. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007).
    [CrossRef] [PubMed]
  20. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006).
    [CrossRef] [PubMed]
  21. M. Soltani, Novel integrated silicon nanophotonic structures using ultra-high Q resonator, Ph.D. dissertation, Georgia Institute of Technology, 2009.
  22. F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997).
    [CrossRef]
  23. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
    [CrossRef]
  24. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  25. M. Borselli, High-Q microresonators as lasing elements for silicon photonics, Ph.D dissertation, California Institute of Technology, 2006.
  26. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.

2010 (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[CrossRef]

2009 (3)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
[CrossRef]

2008 (1)

2007 (7)

2006 (4)

2005 (2)

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

1997 (1)

F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

Adibi, A.

Ahn, J.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Beausoleil, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Beausoleil, R. G.

Binkert, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Borselli, M.

Chew, W. C.

F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

Chrystal, C.

Davis, A.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Elston, S.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Fattal, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

Fernandes, G.

Fiorentino, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Green, W. M.

Gunn, C.

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Han, Z.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Johnson, T.

Johnson, T. J.

Jouppi, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Khan, M. H.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Krishna, S.

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[CrossRef]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007).
[CrossRef] [PubMed]

Lipson, M.

M. Lipson, “Silicon photonics: An exercise in self control,” Nat. Photonics 1(1), 18–19 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[CrossRef]

Liu, Z.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

McLaren, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Michael, C. P.

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[CrossRef]

Painter, O.

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[CrossRef]

Prabhu, A. M.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qi, M.

Rooks, M.

Rooks, M. J.

Santori, C.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schreiber, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Sekaric, L.

Shainline, J.

Shen, H.

Soltani, M.

Spillane, S.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Srinivasan, K.

Stintz, A.

Teixeira, F. L.

F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

Tsay, A.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

Van, V.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

Vantrease, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Vlasov, Y.

Vlasov, Y. A.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[CrossRef]

Xia, F.

Xiao, S.

Xu, J.

Xu, Q.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Zia, R.

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free special range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, and Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, “Systematic engineering of waveguide-resonator coupling for silicon microring/microdisk/racetrack resonators: theory and experiment,” IEEE J. Quantum Electron. 46(8), 1158–1169 (2010).
[CrossRef]

IEEE Micro (1)

C. Gunn, “CMOS Photonics for High-Speed Interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave Guided Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21(10), 651–653 (2009).
[CrossRef]

J. Lightwave Technol. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” J. Lightwave Technol. 35, 1322 (1999).

Nat. Photonics (1)

M. Lipson, “Silicon photonics: An exercise in self control,” Nat. Photonics 1(1), 18–19 (2007).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (11)

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006).
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007).
[CrossRef] [PubMed]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15(8), 4745–4752 (2007).
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007).
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Improvement of thermal properties of ultra-high Q silicon microdisk resonators,” Opt. Express 15(25), 17305–17312 (2007).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
[CrossRef]

Other (7)

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, Ultra-low power silicon microdisk modulators and switches,” IEEE Conf. Group IV Photonics, Sorento, Italy, 2008.

S. Manipatruni, L. Chen, K. Preston, and M. Lipson, “Ultra-low power electro-optic modulator on silicon: towards direct logic driven silicon modulators,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Ultimate miniaturization of single and coupled resonator filters in silicon photonics,” Conference on Laser and Electro-optics (CLEO), Baltimore, MD, 2009.

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2010.

M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” IEEE LEOS Conference, Turkey, 2009.

M. Soltani, Novel integrated silicon nanophotonic structures using ultra-high Q resonator, Ph.D. dissertation, Georgia Institute of Technology, 2009.

M. Borselli, High-Q microresonators as lasing elements for silicon photonics, Ph.D dissertation, California Institute of Technology, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Structure of an axially symmetric silicon TWR structure seated on a substrate and covered by a cladding material. When Rin is zero the resonator is a microdisk; otherwise it is a microring or a microdonut. A ray approaches to the propagation of the traveling mode of the resonator for (b) a microdisk, (c) a microring, and (d) a microdonut. The mode leakage from the external wall of the resonators due to sidewall bending is shown.

Fig. 2
Fig. 2

Variation of the radiation Q of the 1st radial order TE mode of a miniaturized silicon microdisk resonator with a thickness of 230 nm versus its radius for three different cases as shown in the legend of the figure. The markers correspond to the obtained simulation points. The azimuthal harmonic mode number (m) of each resonance mode is shown next to each mode number. In all the simulations the radius of the microdisk is adjusted such that the resonance wavelength is in the range 1550 ± 10 nm. The refractive indices of silicon, oxide and air are assumed to be 3.475, 1.444, and 1, respectively. The inset shows the cross section of the microdisk in the cylindrical coordinate.

Fig. 3
Fig. 3

Radial distribution of the normalized-to-peak electric energy density of the 1st order radial TE mode for Si microdisk resonators with a thickness of 230 nm and different radii R = 2 μm, 10 μm, and 20 μm, as specified in the figure. The point 0 in the horizontal axis corresponds to the position of the outside edge of the microdisk. All plots are for the variations of energy across a line in the radial direction and passing through the middle of the microdisk thickness.

Fig. 4
Fig. 4

(a)-(d) The cross sections of the mode energy of the 1st and the 2nd radial mode order of a microdonut resonator with an external radius of 2.05 μm, and widths (W)s of 1.45 μm and 0.85 μm, respectively. The silicon layer has a thickness of 230 nm and is surrounded by an oxide cladding. (e) and (f) Variation of the radiation Q and the resonance wavelength of the microdonut for the first 2 radial order modes for a fixed external radius of 2.05 μm versus different donut widths. The azimuthal mode number m (shown for each simulation point) is chosen in such a way that the resonance wavelength to be in the range of 1550 ± 15 nm.

Fig. 5
Fig. 5

Calculated normalized mode volume (V m /(λ0/nSi)3) of the first three radial TE modes of a Si microdisk resonator, as well as the one for the fundamental TE mode of a microring resonator versus their outer diameters. In all the resonators, the resonator thickness is 230 nm, the substrate is SiO2, and the cladding is air. The microring width is 500 nm. For all the simulations, the mode volume was calculated for one of the resonance wavelengths (λ 0) that existed in the range of 1550 ± 20 nm.

Fig. 6
Fig. 6

Cross section of the z component of the magnetic field profile (Hz) of (a) the 1st and (b) the 2nd radial order modes of a microdonut resonator with a radius of R = 2.5 μm and a width of W = 1 μm, seated on a thin silicon slab layer with a thickness of P = 50 nm. (c) Calculated Q of the 1st and the 2nd radial order TE modes of a Si microdonut resonator versus its external radius for different donut widths and thin slab thicknesses as specified in the figure. In all simulations, both the substrate and the cladding are oxide, the silicon thickness is 230 nm, and the calculated Q is for one of the resonance wavelengths (λ 0) that exists in the range of 1550 ± 25 nm.

Fig. 7
Fig. 7

(a) SEM image of a microdisk resonator with a radius of ~1.53 μm coupled to a waveguide with a width of 400 nm. The gap between the waveguide and the resonator is ~210 nm. The thickness of the Si microdisk is 213 nm, and there is a thin HSQ layer with a thickness of ~60 nm on top of the microdisk and the waveguide. (b) Transmission spectrum of the resonator showing the 1st radial order TE mode. (c) Detailed resonance spectrum of the 1st radial order TE mode of the resonator in (a), which shows resonance splitting. By fitting theory to experiment, the intrinsic Q's ≈110,000 and 88,000 are obtained for the two standing-wave modes. The value of the coupling Q (Q c) is ~99,000 in the fitted data is close to the calculated value from coupled-mode theory. The azimuth harmonic mode number of this mode is m = 13 and its mode volume is ~6.3 (λ 0/n)3 with n = 3.475.

Fig. 8
Fig. 8

(a) Top: An array of 32 donut resonators side coupled to a waveguide. Bottom: The SEM image of one of the resonators in the array. The structure has oxide cladding. An inner hole with a radius of 0.6 μm has been made at each disk center. The external radius of the resonators in the array is distributed in the range of 1.92 μm to 2 μm. (b) The resonance spectrum of the resonators array shown in (a). (c) and (d) The details of two of the resonance features shown in (b). These resonances belong to two different resonators with 5 nm difference in their external radii. In (c), resonance splitting with a doublet in the transmission is observed. In (d) resonance splitting has resulted in the flattening of the transmission. Strong Fabry-Perot fringes of the waveguide with a period of ~31 pm are observed. By fitting theory and experiment in (d) intrinsic Q's of ~82,500 and 75,000 are obtained for the two standing-wave modes of the resonator.

Fig. 9
Fig. 9

The SEM image of a miniaturized add-drop filter before covering with oxide. The waveguide width and thickness are 400 nm and 230 nm, respectively. The employed microdisk resonator has a radius of r = 1.97 μm with an inner hole with a radius of r = 0.6 μm at its center. The gap between the waveguide and the resonator is 240 nm. The final structure has an oxide cladding. (b) Transmission spectrum of the drop port of the filter showing the two resonances belonging to the 1st order radial family modes with azimuth mode numbers (m) specified in the figure.

Fig. 10
Fig. 10

(a) Transmission spectrum of a Si microdonut resonator seated on a thin Si slab. Inset shows the SEM image of the resonator. The resonator has internal and external radii of 1.3 μm and 2.5 μm, respectively, and coupled to a waveguide with a width of 400 nm. The gap between the waveguide and the resonator is 250 nm. The thickness of the underneath thin slab layer is 33 nm and the overall height of the Si device layer is 216 nm. (b) A zoomed view of one of the resonance modes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q t 1 = Q l i n e a r 1 + Q n o n l i n e a r 1 =                                     [ Q r a d 1 + Q b , a b s 1 + Q s , a b s 1 + Q s c a t 1 + Q c 1 ] + [ Q T P A 1 + Q T P A F C 1 ]
× [ 1 n 2 × H ¯ ] = ( ω 0 c ) 2 H ¯
H ¯ = Η ¯ ( ρ , z ) exp ( i ω 0 t i m φ )
Q r a d = R e a l ( w 0 )   /   [ 2 I m a g ( w 0 ) ] .
n e f f = β φ ( ω 0 / c ) = 2 π m / ( 2 π R ) ( ω 0 / c ) = m c R ω 0
V m = n 2 | E | 2 d v ( | n E | max ) 2
Q s p l i t = 4 | δ ε E C W E C C W d v | = λ 0 Δ λ s p l i t
T ( ω 0 ) = 1 ( 1 + 0.5 Q c / Q i ) 2

Metrics