Abstract

The absorption in metallic gratings with subwavelength slits is theoretically investigated. Anomalous optical absorption occurs over a wide range of incident angles for TM and TE polarizations with different geometric parameters. In particular, a nearly perfect absorbance up to 99.5% with a significant bandwidth is attained for TM polarization with compound slits. Enhanced absorption is associated with extreme concentration of fields inside the structure. The respective field pattern depicts a special feature of surface plasmons excited on single interface only, which are identified as semibonding modes. The anomalous absorption is also achieved for TE polarization, when the compound grating is reduced to a simple grating. For this polarization, the anomalous absorption is attributed to the occurrence of trapped modes, with a slightly smaller absorbance (98.4%).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  4. Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef] [PubMed]
  5. F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
    [CrossRef]
  6. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  7. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
    [CrossRef]
  8. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  9. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
    [CrossRef]
  10. Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
    [CrossRef] [PubMed]
  11. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
    [CrossRef] [PubMed]
  12. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
    [CrossRef]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  14. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
    [CrossRef]
  15. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  16. L. Dai, and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
    [CrossRef] [PubMed]
  17. D. K. Gramotnev, “Anomalous absorption of TM electromagnetic waves by an ultrathin layer: optical analog of liquid friction,” Opt. Lett. 23, 91–93 (1998).
    [CrossRef]
  18. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef] [PubMed]
  19. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
    [CrossRef]
  20. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
    [CrossRef]
  21. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  22. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
    [CrossRef]
  23. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
    [CrossRef]
  24. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  25. E. D. Palik, and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).
  26. R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010).
    [CrossRef]
  27. Y. T. Chen, R. L. Chern, and H. Y. Lin, “Multiple Fano resonances in metallic arrays of asymmetric dual stripes,” Appl. Opt. 49, 2819–2826 (2010).
    [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  29. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
    [CrossRef]
  30. N. W. Alcock, “Secondary bonding to nonmetallic elements,” Adv. Inorg. Chem. 15, 1–58 (1972).
    [CrossRef]
  31. N. W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic chemistry (Ellis Horwood, 1990).
  32. A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
    [CrossRef]
  33. E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).
  34. D. Crouse, and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
    [CrossRef] [PubMed]
  35. Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
    [CrossRef]

2010 (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010).
[CrossRef]

Y. T. Chen, R. L. Chern, and H. Y. Lin, “Multiple Fano resonances in metallic arrays of asymmetric dual stripes,” Appl. Opt. 49, 2819–2826 (2010).
[CrossRef] [PubMed]

2009 (9)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

L. Dai, and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009).
[CrossRef] [PubMed]

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Y. Park, E. Drouard, O. E. Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

2008 (5)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

2007 (2)

2006 (3)

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[CrossRef]

2005 (3)

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
[CrossRef]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

D. K. Gramotnev, “Anomalous absorption of TM electromagnetic waves by an ultrathin layer: optical analog of liquid friction,” Opt. Lett. 23, 91–93 (1998).
[CrossRef]

1972 (1)

N. W. Alcock, “Secondary bonding to nonmetallic elements,” Adv. Inorg. Chem. 15, 1–58 (1972).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Alcock, N. W.

N. W. Alcock, “Secondary bonding to nonmetallic elements,” Adv. Inorg. Chem. 15, 1–58 (1972).
[CrossRef]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Borisov, A. G.

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Campillo, I.

Chandran, A.

Chen, Y. T.

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Chern, R. L.

Y. T. Chen, R. L. Chern, and H. Y. Lin, “Multiple Fano resonances in metallic arrays of asymmetric dual stripes,” Appl. Opt. 49, 2819–2826 (2010).
[CrossRef] [PubMed]

R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010).
[CrossRef]

Cho, M. H.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Crouse, D.

Dai, L.

Daif, O. E.

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Dolado, J. S.

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Drouard, E.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Fan, S.

Fave, A.

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[CrossRef]

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
[CrossRef]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

García-Vidal, F. J.

E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gómez-Medina, R.

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
[CrossRef]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Gramotnev, D. K.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Hong, W. T.

R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010).
[CrossRef]

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Jiang, C.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Kaminski, A.

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Keshavareddy, P.

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lee, J. W.

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

Lee, Y. P.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Lemiti, M.

Letartre, X.

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lin, H. Y.

Lu, Y.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Martin-Moreno, L.

E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).

Mittleman, D. M.

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Nordlander, P.

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Park, T. H.

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

Park, Y.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Qiu, M.

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Rhee, J. Y.

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Ruan, Z.

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

Sáenz, J. J.

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14, 7–18 (2006).
[CrossRef]

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
[CrossRef]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Seassal, C.

Shabanov, S. V.

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
[CrossRef]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

Veronis, G.

Viktorovitch, P.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yu, Z.

Adv. Inorg. Chem. (1)

N. W. Alcock, “Secondary bonding to nonmetallic elements,” Adv. Inorg. Chem. 15, 1–58 (1972).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95, 161101 (2009).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits,” Appl. Phys. Lett. 93, 061102 (2008).
[CrossRef]

J. Opt. (1)

R. L. Chern, and W. T. Hong, “Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes,” J. Opt. 12, 065101 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Moreno, L. Martin-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006).

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (2)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (8)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
[CrossRef]

J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Antibonding plasmon mode coupling of an individual hole in a thin metallic film,” Phys. Rev. B 80, 205417 (2009).
[CrossRef]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
[CrossRef]

A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, “Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials,” Phys. Rev. B 71, 075408 (2005).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71, 085408 (2005).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78, 205405 (2008).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonics metamaterial,” Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

F. J. García de Abajo, R. Gómez-Medina, and J. J. Sáenz, “Full transmission through perfect-conductor subwavelength hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016608 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103, 203901 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Other (4)

J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).

E. D. Palik, and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

N. W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic chemistry (Ellis Horwood, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the metallic grating with compound subwavelength slits sandwiched between two dielectric slabs, where a is the grating period, t is the grating thickness, h is the slab thickness, s is the slit width, and d is the distance between slits. The grating and slabs are made of aluminum (Al) and polysilicon (p-Si), respectively.

Fig. 2.
Fig. 2.

(a) Absorbance (along with reflectance and transmittance) of the metallic (Al) grating with compound subwavelength slits sandwiched between two dielectric (p-Si) slabs as sketched in Fig. 1, where a = 400 nm, s = 80 nm, d = 40 nm, t = 210 nm, and h = 50 nm. (b) Effect of the attachment of top and bottom dielectric slabs to the metallic grating on the absorbance.

Fig. 3.
Fig. 3.

Effect of the Al grating on the absorbance. Solid line is the result for the same structure as in Fig. 2(a). Dashed line is the result of replacing the Al grating with a homogeneous Al slab of the same thickness (t = 210 nm). Dash-dotted and dotted lines are results for a single Al slab of thickness 210 nm and for a single p-Si slab of thickness 50 nm, respectively.

Fig. 4.
Fig. 4.

Variations of absorbance (along with reflectance and transmittance) with respect to (a) dielectric slab thickness h, where t = 210 nm, s = 80 nm, and d = 40 nm, (b) metallic grating thickness t, where h = 50 nm, s = 80 nm, and d = 40 nm, (c) slit width s, where h = 50 nm, t = 210 nm, and d = 40 nm, and (d) distance between slits d, where h = 50 nm, t = 210 nm, and s = 80 nm. For all cases, the grating period a = 400 nm and λ ≈ 891 nm.

Fig. 5.
Fig. 5.

(a) Power loss in the metallic grating (Al), the dielectric slabs (p-Si), and the whole system for the same grating structure as in Fig. 2. (b) Absorbance as a function of parallel wave number (k a/2π) and frequency (ωa/2πc). Black solid line stands for the light line ω = k c, which corresponds to the grazing incidence (θ = 90°). Black dashed line denotes the band folding due to periodicity.

Fig. 6.
Fig. 6.

(a) Vertical electric fields Ey , (b) horizontal electric fields Ex , and (c) time-averaged power loss density dP loss/dV associated with the absorption peaks at λ ≈ 414 nm (left), 614nm (center), and 891nm (right) in Fig. 2. In (c), the signs of surface charges at the top and bottom surfaces are overlaid to illustrate the features of antibonding (left), bonding (center), and semibonding (right).

Fig. 7.
Fig. 7.

(a) Absorbance (along with reflectance and transmittance) of the grating structure for TE polarization, where the geometric parameters are the same as for TM polarization (cf. Fig. 2) except that d = 0. (b) Absorbance as a function of parallel wave number (k a/2π) and frequency (ωa/2πc) for the same grating structure. The dotted line indicates the oblique incident angle of θ = 10°, on which the white circles are crossing points with the two major absorption bands.

Fig. 8.
Fig. 8.

Time-averaged Poynting vectors 〈S〉, overlaid with the color contours of electric fields Ez , associated with the two major absorption peaks for θ = 10° at λ ≈ 687 nm (left) and 735nm (right) [indicated by the white circles in Fig. 7(b)].

Fig. 9.
Fig. 9.

(a) Electric field Ez and (b) time-averaged power loss density dP loss/dV associated with the absorption peaks at λ ≈ 434 nm (left) and 721nm (right) in Fig. 7(a).

Metrics