Abstract

A metallic nano-slit surrounded with asymmetric grooves is proposed as the plasmonic concentrator for oblique incident light. A theoretical model based on the surface plasmon polariton (SPP) coupled-mode method is derived for the extraordinary optical transmission (EOT) through such a structure under oblique incidence. The model is quantitatively validated with the finite element method. With the model, the physical insight of the EOT is then interpreted, i.e., the major contributions to the transmission include the vertical Fabry-Perot resonance of the slit, and the interference among slit modes excited by the incident light, by SPPs generated from groove arrays and their first-order reflections. This is quite different from the EOT through a nano-slit surrounded with symmetric grooves under normal incidence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
    [CrossRef]
  2. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
    [CrossRef]
  3. R. D. Bhat, N. C. Panoiu, S. R. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express 16,4588–4596 (2008).
    [CrossRef] [PubMed]
  4. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
    [CrossRef]
  5. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001).
    [CrossRef]
  6. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
    [CrossRef] [PubMed]
  7. A. Degiron and T.W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12,3694–3700 (2004).
    [CrossRef] [PubMed]
  8. B. Ung and Y. Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express 15,1182–1190 (2007).
    [CrossRef] [PubMed]
  9. O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
    [CrossRef] [PubMed]
  10. Y. X. Cui and S. L. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17,13995–14000 (2009).
    [CrossRef] [PubMed]
  11. L. Cai, G. Li, Z. Wang, and A. Xu, “Interference and horizontal Fabry-Perot resonance on extraordinary transmission through a metallic nano-slit surrounded with grooves,” Opt. Lett. 35,127–129 (2010).
    [CrossRef] [PubMed]
  12. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
    [CrossRef]
  13. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007).
    [CrossRef] [PubMed]
  14. D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15,2585–2591 (2007).
    [CrossRef] [PubMed]
  15. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
    [CrossRef]
  16. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
    [CrossRef]
  17. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18,2865–2875 (2001).
    [CrossRef]
  18. G. Li, L. Cai, F. Xiao, Y. Pei, and A. Xu, “A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors,” Opt. Express 18,10487–10499 (2010).
    [CrossRef] [PubMed]
  19. G. Li and A. Xu, “Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc SPIE 7135,71350T (2008).
    [CrossRef]
  20. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23,1608–1615 (2006).
    [CrossRef]
  21. H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14,11823–11832 (2006).
    [CrossRef] [PubMed]
  24. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
    [CrossRef]
  25. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
    [CrossRef]

2010

2009

Y. X. Cui and S. L. He, “A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves,” Opt. Express 17,13995–14000 (2009).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

2008

G. Li and A. Xu, “Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc SPIE 7135,71350T (2008).
[CrossRef]

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

R. D. Bhat, N. C. Panoiu, S. R. Brueck, and R. M. Osgood, “Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating,” Opt. Express 16,4588–4596 (2008).
[CrossRef] [PubMed]

2007

B. Ung and Y. Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express 15,1182–1190 (2007).
[CrossRef] [PubMed]

D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Directional light beaming control by a subwavelength asymmetric surface structure,” Opt. Express 15,2585–2591 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
[CrossRef] [PubMed]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

2006

2005

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
[CrossRef]

2004

2003

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

2001

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18,2865–2875 (2001).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

’t Hooft, G. W.

’t Hooft, G.W.

O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
[CrossRef] [PubMed]

Bhat, R. D.

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
[CrossRef]

Brueck, S. R.

Cai, L.

Cao, Q.

Chang, C.-K.

Cheng, T.-D.

Cui, Y. X.

de León-Pérez, F.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Degiron, A.

Dunbar, L. A.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

Ebbesen, T.W.

Eckert, R.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

García-Vidal, F. J.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

Grenet, E.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Guillaumée, M.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Hahn, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

He, S. L.

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23,1608–1615 (2006).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18,2865–2875 (2001).
[CrossRef]

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14,11823–11832 (2006).
[CrossRef] [PubMed]

Kim, H.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

Kim, S.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

Kima, T. J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

Lalanne, P.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23,1608–1615 (2006).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18,2865–2875 (2001).
[CrossRef]

Lee, B.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

Lee, C.-K.

Lezec, H. J.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

Li, G.

Lim, Y.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

Lin, D.-Z.

Linke, R. A.

Liu, H.

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

Liu, H. T.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

Liu, J.-M.

López-Tejeira, F.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

Martín-Moreno, L.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Park, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

Pei, Y.

Pellerin, K. M.

Pendry, J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

Rodier, J. C.

Santschi, C.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Sheng, Y.

Silberstein, E.

Stanley, R. P.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

Thio, T.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26,1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

Ung, B.

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. ’t Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14,11823–11832 (2006).
[CrossRef] [PubMed]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
[CrossRef]

Wang, B.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

Wang, Z.

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

Xiao, F.

Xu, A.

Yang, X.

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

Yeh, C.-S.

Yeh, J.-T.

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89,151116 (2006).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95,011113 (2009).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90,051113 (2007).
[CrossRef]

IEEE J. Quantum Electron.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46,300–305 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14,1522–1529 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391,667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445,39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200,1–7 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72,161405 (2005).
[CrossRef]

Phys. Rev. Lett.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90,213901 (2003).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G.W. ’t Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99,043902 (2007).
[CrossRef] [PubMed]

Proc SPIE

G. Li and A. Xu, “Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave,” Proc SPIE 7135,71350T (2008).
[CrossRef]

Surf. Sci. Rep.

P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-⌊ metallic surfaces,” Surf. Sci. Rep. 64,453–469 (2009).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Application of the proposed structure composed of a nano-slit surrounded with asymmetric grooves acting as the plasmonic concentrator in the photodetector for oblique incident light.

Fig. 2.
Fig. 2.

(a) Schematic of the proposed model for the metallic nano-slit surrounded with asymmetric periodic grooves. The groove periods, slit-groove distances, and the duty cycles for the left and the right arrays are p 1,d 1, f 1 and p 2,d 2, f 2, respectively. The depths for grooves on both sides are h. The electromagnetic quantities A 1,B 1,A 2,B 2,U,D are all defined in the text. (b)–(g) show the main elementary scattering processes involved in the EOT. (b) and (c) show the scattering coefficients under the fundamental slit mode illumination. (d) is the scattering of incident SPP mode by a nano-slit. (e) and (f) show the generation and reflectance of the SPP mode by a groove array, respectively. (g) shows the generation of the SPP modes and the slit fundamental mode by a nano-slit.

Fig. 3.
Fig. 3.

(a) ∣D2 predicted by the proposed model as a function of slit-groove distances d 1 and d 2. The calculations are performed for N = 10, wsl = 100 nm, t = 174 nm, h = 70 nm, and θ = 20°. The period and the duty cycle are p 1 = 1180 nm, f 1 = 0.38 for the grooves on the left side, and p 2 = 588 nm, f 2 = 0.5 for those on the right side. (b) and (c) show the comparisons between ∣D2 predicted by the model and the transmission efficiency η calculated by FEM simulations. The calculations are performed along the vertical green line with d 1 = 160 nm and the horizontal white line with d 2 = 100 nm in (a), respectively. (d) and (e) show the scattered magnetic field ∣Hz 2 calculated by the FEM. The slit-groove distances for (d) and (e) correspond to the point “Q” (d 1 = 160 nm, d 2 = 80 nm) and the point “P” (d 1 = 160 nm, d 2 = 360 nm) in (a), respectively.

Fig. 4.
Fig. 4.

Interference interpretation of the term αw 1 β 1(1 + τδ 2) in Eq. (5).

Fig. 5.
Fig. 5.

Angular transmission efficiencies for the plasmonic concentrators designed for θ = 0° (black), θ = 10° (red), θ = 20° (green) and θ = 30° (blue). The calculations are performed for p 1=p 2=785nm, f 1=f 2=0.52, d 1=d 2=240nm; p 1=946nm, p 2=670nm, f 1=0.46, f 2=0.5, d 1=200nm, d 2=130nm; p 1=1180nm, p 2=588nm, f 1=0.38, f 2=0.5, d 1=160nm, d 2=80nm; and p 1=1540nm, p 2=526nm, f 1=0.5, f 2=0.56, d 1=400nm, d 2=120nm, respectively. Other parameters are the same as those used in Fig. 3. The parameters p 1 and p 2 are chosen according to Eq. (1), d 1 and d 2 are predicted by the proposed model.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

k 0 n sp = k 0 sin θ + m 2 π p ,
B 1 = r g 1 w 1 A 1 + β 1 ( θ ) I 0 ,
A 1 = τ w 2 A 2 + β s ( θ ) I 0 + α v U + ρ w 1 B 1 ,
A 2 = r g 2 w 2 B 2 + β 2 ( θ ) I 0 ,
B 2 = τ w 1 B 1 + β s ( θ ) I 0 + α v U + ρ w 2 A 2 ,
D = r s 1 v U + t 0 ( θ ) I 0 + α w 1 B 1 + α w 2 A 2 ,
U = r s 2 v D ,
D = I 0 1 r s 1 r s 2 v 2 { t 0 ( θ ) + α [ 1 + ( τ ρ ) δ 2 ] w 1 β 1 ( θ ) + α [ 1 + ( τ ρ ) δ 1 ] w 2 β 2 ( θ ) ( 1 ρ δ 1 ) ( 1 ρ δ 2 ) τ 2 δ 1 δ 2 } ,
D = I 0 1 r s 1 r s 2 v 2 [ t 0 + 2 α w β 1 ( τ + ρ ) r g w 2 ] ,
D = I 0 1 r s 1 r s 2 v 2 [ t 0 + α w 1 β 1 ( 1 + τ δ 2 ) + α w 2 β 2 ( 1 + τ δ 1 ) 1 τ 2 δ 1 δ 2 ] .
2 k 0 Re ( n sl ) t + arg ( r s 1 ) + arg ( r s 2 ) = 2 q π ,
2 k 0 Re ( n sp ) d 2 + arg ( r g 2 ) + arg ( τ ) = 2 m 2 π ,
2 k 0 Re ( n sp ) d 1 + arg ( r g 1 ) + arg ( τ ) = 2 m 1 π ,
D = I 0 1 r s 1 r s 2 v 2 [ t 0 + α w 1 β 1 ( 1 + τ δ 2 ) + α w 2 β 2 ( 1 + τ δ 1 ) ] .
D = I 0 1 r s 1 r s 2 v 2 [ t 0 + α w 1 β 1 + α w 2 β 2 ( 1 + τ δ 1 ) ] .

Metrics