Abstract

The Talbot effect is utilized for micro-fabrication of periodic microstructures via proximity lithography in a mask aligner. A novel illumination system, referred to as MO Exposure Optics, allows to control the effective source shape and accordingly the angular spectrum of the illumination light. Pinhole array photomasks are employed to generate periodic high-resolution diffraction patterns by means of self-imaging. They create a demagnified image of the effective source geometry in their diffraction pattern which is printed to photoresist. The proposed method comprises high flexibility and sub-micron resolution at large proximity gaps. Various periodic structures have been generated and are presented.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Talbot, “Facts Relating to Optical Science, No. IV,” Philos. Mag. 9, 401–407 (1836).
  2. A. Kolcodziejczyk, “Lensless multiple image formation by using a sampling filter,” Opt. Commun. 59(2), 97–102 (1986).
    [CrossRef]
  3. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63(4), 416–419 (1973).
    [CrossRef]
  4. A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
    [CrossRef]
  5. Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
    [CrossRef]
  6. T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
    [CrossRef]
  7. R. Voelkel and ., “Advanced mask aligner lithography: New illumination system,” Opt. Express (to be published).
    [PubMed]
  8. R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” EP 09169158.4, (2009).
  9. T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, (2010).
  10. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel Images. I. Plane Periodic Objects in Monochromatic Light,” J. Opt. Soc. Am. 55(4), 373–381 (1965).
    [CrossRef]
  11. C. Mack, Fundamental principles of optical lithography (John Wiley & Sons, 2007), Chap. 1.
  12. W. Wang, and H. Zhu, “Near-field diffraction of a hexagonal array at fractional Talbot planes,” Proc. SPIE 7506, (2009).
  13. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the talbot effect,” Appl. Opt. 29(29), 4337–4340 (1990).
    [CrossRef] [PubMed]
  14. V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994).
    [CrossRef]
  15. J. R. Leger and G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15(5), 288–290 (1990).
    [CrossRef] [PubMed]
  16. H. Hamam, “Design of Talbot array illuminators,” Opt. Commun. 131(4-6), 359–370 (1996).
    [CrossRef]
  17. A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
    [CrossRef]
  18. E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
    [CrossRef]
  19. B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
    [CrossRef]
  20. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
    [CrossRef]

2005

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

2004

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

2001

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

1998

Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
[CrossRef]

1997

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

1996

H. Hamam, “Design of Talbot array illuminators,” Opt. Commun. 131(4-6), 359–370 (1996).
[CrossRef]

1994

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994).
[CrossRef]

1990

1986

A. Kolcodziejczyk, “Lensless multiple image formation by using a sampling filter,” Opt. Commun. 59(2), 97–102 (1986).
[CrossRef]

1973

1965

1836

H. F. Talbot, “Facts Relating to Optical Science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Andrés, P.

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

Arrizón, V.

V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994).
[CrossRef]

Barreio, J. C.

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

Barton, R. A.

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

Besold, B.

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[CrossRef]

Bonet, E.

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

Bryngdahl, O.

Chuang, Y.-C.

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

Deguzman, P. C.

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

Hamam, H.

H. Hamam, “Design of Talbot array illuminators,” Opt. Commun. 131(4-6), 359–370 (1996).
[CrossRef]

Henao, R.

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

Ibarra, J. G.

V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994).
[CrossRef]

Jaroszewicz, Z.

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
[CrossRef]

Jürss, M.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Kolcodziejczyk, A.

A. Kolcodziejczyk, “Lensless multiple image formation by using a sampling filter,” Opt. Commun. 59(2), 97–102 (1986).
[CrossRef]

Kolodziejczyk, A.

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
[CrossRef]

Kowalik, A.

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

Leger, J. R.

Lindlein, N.

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[CrossRef]

Lohmann, A. W.

Pons, A.

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Quintero, O.

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Suleski, T. J.

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

Swanson, G. J.

Sypek, M.

Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
[CrossRef]

Talbot, H. F.

H. F. Talbot, “Facts Relating to Optical Science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Thomas, J. A.

Voelkel, R.

R. Voelkel and ., “Advanced mask aligner lithography: New illumination system,” Opt. Express (to be published).
[PubMed]

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Winthrop, J. T.

Worthington, C. R.

Appl. Opt.

J. Opt. A, Pure Appl. Opt.

A. Kolodziejczyk, Z. Jaroszewicz, R. Henao, and O. Quintero, “The Talbot array illuminator: imaging properties and a new interpretation,” J. Opt. A, Pure Appl. Opt. 6(6), 651–657 (2004).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

A. Kolcodziejczyk, “Lensless multiple image formation by using a sampling filter,” Opt. Commun. 59(2), 97–102 (1986).
[CrossRef]

V. Arrizón and J. G. Ibarra, “Trading visibility and opening ratio in Talbot arrays,” Opt. Commun. 112(5-6), 271–277 (1994).
[CrossRef]

H. Hamam, “Design of Talbot array illuminators,” Opt. Commun. 131(4-6), 359–370 (1996).
[CrossRef]

A. Kolodziejczyk, Z. Jaroszewicz, A. Kowalik, and O. Quintero, “Kinoform sampling filter,” Opt. Commun. 200(1-6), 35–42 (2001).
[CrossRef]

E. Bonet, P. Andrés, J. C. Barreio, and A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106(1-3), 39–44 (1994).
[CrossRef]

Opt. Eng.

B. Besold and N. Lindlein, “Fractional Talbot effect for periodic microlens arrays,” Opt. Eng. 36(4), 1099–1105 (1997).
[CrossRef]

Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Microlens array produced with the help of the sampling filter,” Opt. Eng. 37(11), 3002–3006 (1998).
[CrossRef]

Opt. Express

R. Voelkel and ., “Advanced mask aligner lithography: New illumination system,” Opt. Express (to be published).
[PubMed]

Opt. Lett.

Philos. Mag.

H. F. Talbot, “Facts Relating to Optical Science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Proc. SPIE

T. J. Suleski, Y.-C. Chuang, P. C. Deguzman, and R. A. Barton, “Fabrication of optical microstructures through fractional Talbot imaging,” Proc. SPIE 5720, 86–93 (2005).
[CrossRef]

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997).
[CrossRef]

Other

R. Voelkel, U. Vogler, A. Bich, K. J. Weible, M. Eisner, M. Hornung, P. Kaiser, R. Zoberbier, E. Cullmann, “Illumination system for a microlithographic contact and proximity exposure apparatus,” EP 09169158.4, (2009).

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, (2010).

C. Mack, Fundamental principles of optical lithography (John Wiley & Sons, 2007), Chap. 1.

W. Wang, and H. Zhu, “Near-field diffraction of a hexagonal array at fractional Talbot planes,” Proc. SPIE 7506, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical model of a mask aligner exposure set-up based on MO Exposure Optics; every secondary point source in the aperture plane generates a tilted plane wave in the mask plane; the effective source geometry can be controlled by a metallic aperture referred to as Illumination Filter Plate (IFP)

Fig. 2
Fig. 2

Self-imaging of a periodic pinhole array under normal monochromatic (365nm) illumination: (a) mask layout, 800nm features in 6µm pitch; (b) simulated intensity distribution in the Talbot distance (197µm in the given configuration)

Fig. 3
Fig. 3

Periodic arrangement of 3µm sized “F” printed in 66µm proximity distance (half of the Talbot distance): (a) macroscopic aperture (IFP) which defines the F-shape of the unit cell; (b) pinhole array with 5µm pitch and 600nm width square features which has been used as photomask; (c) scanning electron micrograph showing the realized pattern in AZ1505 photoresist of 500nm thickness on silicon, the periodicity equals the mask period; (d) scanning electron micrograph of the same sample after reactive ion etching (Bosch process)

Fig. 4
Fig. 4

Periodic arrangement of 5µm stars printed in 98µm proximity distance (half of the Talbot distance), a pinhole array with 6µm pitch and 800nm width square features has been used as photomask: (a) layout of the star shaped angle defining aperture; (b) scanning electron micrograph of the pattern realized in AZ1518 of 650nm thickness on silicon after reactive ion etching (Bosch process) and resist stripping, the periodicity equals the mask period; the difference in scaling compared to Fig. 3 appears since different aligners have been used for exposure

Fig. 5
Fig. 5

Periodic arrangement of 800nm lines printed in 98 µm proximity distance (half of the Talbot distance): (a) layout of the line shaped angle defining aperture, the line is oriented in parallel to the grating lines; (b) amplitude grating with 6µm pitch and 800nm width features which has been used as photomask; (c) scanning electron micrograph of the pattern realized in AZ1518 of 2.2µm thickness on silicon after reactive ion etching (Bosch process) and resist stripping, the periodicity equals the mask period (d) scanning electron micrograph showing a cross section of the same pattern

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d T a l b o t = 2 p 2 λ
S D = d f S A
Δ x ~ λ d .

Metrics